Detection

Capacitive Proximity Sensor Metal Body Round
 KCR(P) Series

Part Number Description

*Standard specification is not appeared in part number description

Guide to Selection

Size	O3	O5	\square	08	012	-18	25	- 30	O32	34	40	80
Available					0	\bigcirc		0				
Sensing Distance	0.8 mm	1 mm	1.5 mm	2 mm	3 mm	4 mm	5 mm	7 mm	8 mm	10 mm	12 mm	15mm
Available				0		0	0		\bigcirc	\bigcirc		\bigcirc
Sensing Distance	20 mm	22mm	25 mm	30 mm	40 mm	50 mm	70 mm					
Available												
Output	NPN N/C	NPN N/O	PNP N/C	NPN N/O	N/C	N/O	NPN	+N/C	PNP	N/C	Analog	NAMUR
Available	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc						
Connector	2 m Cable			M8 Connector			M12 Connector			Screw Terminal		
Available	\bigcirc						\bigcirc					
Power	7.7-9VDC		10-30VDC		15-30VDC		10-60VDC		20-240VAC		20-240VAC/DC	
Available			\bigcirc						\bigcirc			
II-2	Industrial Controls Catalog				www.kacon.co.kr				Rev. 2/14Data subject may change without notice.			

General Specification

Detectable Object	Conductive Material (Metal, Wood, Water...)
Differential Travel	4% to 20% of sensing distance
Indicators	LED
Cable Outlet	Load short-circuit protection, Surge suppressor, Reverse polarity protection 2 m Cable $3: \mathrm{M12}$ connector
Protection Circuits	Operating/Storage : -25 to $70^{\circ} \mathrm{C}$ (with no icing)
Ambient Temperature	Operating/Storage : 35% to 95% (with no icing)
Ambient Humidity	Max. $\pm 10 \%$ of sensing distance at $23^{\circ} \mathrm{C}$ in the temperature range of -25 to $70^{\circ} \mathrm{C}$
Temperature Influence at rated voltage in the rated voltage $\pm 15 \%$ range	
Voltage Influence	Min. $50 \mathrm{M} \Omega$ (at 500 VDC) between current-carrying parts and case
Insulation Resistance	Destruction : 10 to $55 \mathrm{~Hz}, 1.5-\mathrm{mm}$ double amplitude for 2 hours each in X, Y, and Z directions
Vibration Resistance	Destruction : $500 \mathrm{~m} / \mathrm{s}^{2} 10$ times each in X, Y, and Z directions
Shock Resistance	$\mathrm{KCR}:$ Nickel copper plate $\mathrm{KCS}:$ Plastic
Materials	$\mathrm{IP67}$
Degree of Protection	

Characteristics

DC 3/4 wire			AC 2 wire
Supply Voltage	1:10 ~ 30VDC		5:20~240VAC
Current Consumption	Max. 15mA		
Leakage Current	-		Max. 2.2mA
Voltage Drop		Residual voltage : Max. 2V Load current : Max. 200 mA	Load current : 5 to 300 mA
Operation Mode	3wire	1 : NPN N/O, 2 : NPN N/C, 3 : PNP N/O, 4 : PNP N/C	5 :N/O, 6 : N/C
	4wire	7 : NPN N/O+N/C, 8 : PNP N/O+N/C	
Dielectric Strength	1,000 VAC, $50 / 60 \mathrm{~Hz}$ for 1 minute between current carry parts and case		4,000 VAC, $50 / 60 \mathrm{~Hz}$ for 1 minute between current carry parts and case
Maximum Switching Frequency		50 Hz	15 Hz

Rev. 2/14	www.kacon.co.kr	Industrial Controls Catalog
Data subject may change without notice.	II 3	

Capacitive Proximity Sensor Metal Body Round
 KCR(P) Series

Product Selection

Model	Sensing Distance	Shape	Output	Power	Cable Outlet	Part Number	Response Frequency
M12 Round Metal body 3-Wire(DC)	E : 2mm	$\begin{aligned} & 4 \text { : M12 } \\ & \text { Flush } \end{aligned}$	1: NPN N/O	1:10-30VDC	Standard : 2 m Cable	KCR E411	50 Hz
			2 : NPN N/C			KCR E421	
			3 : PNP N/O			KCR E431	
			4 : PNP N/C			KCR E441	
	$\mathrm{G}: 4 \mathrm{~mm}$	4 : M12 Non flush	1: NPN N/O	1:10-30VDC	Standard : 2 m Cable	KCR G411	50 Hz
			2 : NPN N/C			KCR G421	
			3 : PNP N/O			KCR G431	
			4 : PNP N/C			KCR G441	
	E : 2 mm	$\begin{aligned} & \hline 4 \text { : M12 } \\ & \text { Flush } \end{aligned}$	1: NPN N/O	1:10-30VDC	3 : M12 connector	KCR E411 3	50 Hz
			2 : NPN N/C			KCR E421 3	
			3 : PNP N/O			KCR E431 3	
			4 : PNP N/C			KCR E441 3	
	$\mathrm{G}: 4 \mathrm{~mm}$	$4 \text { : M12 }$ Non flush	1:NPN N/O	1:10-30VDC	3 : M12 connector	KCR G411 3	50 Hz
			2 : NPN N/C			KCR G421 3	
			3 : PNP N/O			KCR G431 3	
			4 : PNP N/C			KCR G441 3	
M18 Round Metal body 3, 4-Wire(DC)	H: 5mm	$\begin{aligned} & \hline 5: \text { M18 } \\ & \text { Flush } \end{aligned}$	1: NPN N/O	1:10-30VDC	Standard : 2 m Cable	KCR H511	50 Hz
			2 : NPN N/C			KCR H521	
			3 : PNP N/O			KCR H531	
			4 : PNP N/C			KCR H541	
			7 : NPN N/O+N/C			KCR H571	
			8 : PNP N/O+N/C			KCR H581	
	$\mathrm{K}: 8 \mathrm{~mm}$	$5 \text { : M18 }$ Non flush	1: NPN N/O	1:10-30VDC	Standard : 2 m Cable	KCR K511	50 Hz
			2 : NPN N/C			KCR K521	
			3 : PNP N/O			KCR K531	
			4 : PNP N/C			KCR K541	
			7 : NPN N/O+N/C			KCR K571	
			8 : PNP N/O+N/C			KCR K581	
	$\mathrm{H}: 5 \mathrm{~mm}$	$\begin{aligned} & \hline 5: \text { M18 } \\ & \text { Flush } \end{aligned}$	1: NPN N/O	1:10-30VDC	3 : M12 connector	KCR H511 3	50 Hz
			2 : NPN N/C			KCR H521 3	
			3 : PNP N/O			KCR H531 3	
			4 : PNP N/C			KCR H541 3	
			7 : NPN N/O+N/C			KCR H571 3	
			8 : PNP N/O+N/C			KCR H581 3	
	$\mathrm{K}: 8 \mathrm{~mm}$	5 : M18 Non flush	1: NPN N/O	1:10-30VDC	3 : M12 connector	KCR K511 3	50 Hz
			2 : NPN N/C			KCR K521 3	
			3 : PNP N/O			KCR K531 3	
			4 : PNP N/C			KCR K541 3	
			7 : NPN N/O+N/C			KCR K571 3	
			8 : PNP N/O+N/C			KCR K581 3	
II-4 Indus	I Controls Catalog		www.kacon.co.kr		Rev. 2/14 Data subject may change without notice.		

Model	Sensing Distance	Shape	Output	Power	Cable Outlet	Part Number	Response Frequency
M30 Round Metal body 3, 4-Wire(DC)	$\mathrm{L}: 10 \mathrm{~mm}$	$\begin{aligned} & 6 \text { : M30 } \\ & \text { Flush } \end{aligned}$	1 : NPN N/O	1:10-30VDC	Standard: 2 m Cable	KCR L611	50 Hz
			2 : NPN N/C			KCR L621	
			3 : PNP N/O			KCR L631	
			4 : PNP N/C			KCR L641	
			7 : NPN N/O+N/C			KCR L671	
			8 : PNP N/O+N/C			KCR L681	
	$\mathrm{P}: 15 \mathrm{~mm}$	$6 \text { : M30 }$ Non flush	1 : NPN N/O	1:10-30VDC	Standard : 2 m Cable	KCR P611	50 Hz
			2 : NPN N/C			KCR P621	
			3 : PNP N/O			KCR P631	
			4 : PNP N/C			KCR P641	
			7 : NPN N/O+N/C			KCR P671	
			8 : PNP N/O+N/C			KCR P681	
	$\mathrm{L}: 10 \mathrm{~mm}$	$\begin{aligned} & 6 \text { : M30 } \\ & \text { Flush } \end{aligned}$	1 : NPN N/O	1:10-30VDC	3 : M12 connector	KCR L611 3	50 Hz
			2 : NPN N/C			KCR L621 3	
			3 : PNP N/O			KCR L631 3	
			4 : PNP N/C			KCR L641 3	
			7 : NPN N/O+N/C			KCR L671 3	
			8 : PNP N/O+N/C			KCR L681 3	
	$\mathrm{P}: 15 \mathrm{~mm}$	$6 \text { : M30 }$ Non flush	1 : NPN N/O	1:10-30VDC	3 : M12 connector	KCR P611 3	50 Hz
			2 : NPN N/C			KCR P621 3	
			3 : PNP N/O			KCR P631 3	
			4 : PNP N/C			KCR P641 3	
			7 : NPN N/O+N/C			KCR P671 3	
			8 : PNP N/O+N/C			KCR P681 3	
M18 Round Plastic body 3, 4-Wire(DC)	$\mathrm{H}: 5 \mathrm{~mm}$	$\begin{aligned} & 5 \text { : M18 } \\ & \text { Flush } \end{aligned}$	1 : NPN N/O	1:10-30VDC	Standard : 2 m Cable	KCP H511	50 Hz
			2 : NPN N/C			KCP H521	
			3 : PNP N/O			KCP H531	
			4 : PNP N/C			KCP H541	
			7 : NPN N/O+N/C			KCP H571	
			8 : PNP N/O+N/C			KCP H581	
	$\mathrm{K}: 8 \mathrm{~mm}$	5 : M18 Non flush	1 : NPN N/O	1:10-30VDC	Standard: 2 m Cable	KCP K511	50 Hz
			2 : NPN N/C			KCP K521	
			3 : PNP N/O			KCP K531	
			4 : PNP N/C			KCP K541	
			7 : NPN N/O+N/C			KCP K571	
			8 : PNP N/O+N/C			KCP K581	
Rev. 2/14 Data subject may change with	tice.		www.kacon.co.kr		Industrial Controls Catalog		II-5

Capacitive Proximity Sensor Metal Body Round
 KCR(P) Series

Product Selection

Model	Sensing Distance	Shape	Output	Power	Cable Outlet	Part Number	Response Frequency
M18 Round Plastic body 3, 4-Wire(DC)	$\mathrm{H}: 5 \mathrm{~mm}$	$\begin{aligned} & 5: \text { M18 } \\ & \text { Flush } \end{aligned}$	1 : NPN N/O	1:10-30VDC	3 : M12 connector	KCP H511 3	50 Hz
			2 : NPN N/C			KCP H521 3	
			3 : PNP N/O			KCP H531 3	
			4 : PNP N/C			KCP H541 3	
			7 : NPN N/O+N/C			KCP H571 3	
			8 : PNP N/O+N/C			KCP H581 3	
	$\mathrm{K}: 8 \mathrm{~mm}$	5 : M18 Non flush	1 : NPN N/O	1:10-30VDC	3 : M12 connector	KCP K511 3	50 Hz
			2 : NPN N/C			KCP K521 3	
			3 : PNP N/O			KCP K531 3	
			4 : PNP N/C			KCP K541 3	
			7 : NPN N/O+N/C			KCP K571 3	
			8 : PNP N/O+N/C			KCP K581 3	
M30 Round Metal body 3, 4-Wire(DC)	$\mathrm{L}: 10 \mathrm{~mm}$	$\begin{aligned} & 6 \text { : M30 } \\ & \text { Flush } \end{aligned}$	1 : NPN N/O	1:10-30VDC	Standard : 2m Cable	KCP L611	50 Hz
			2 : NPN N/C			KCP L621	
			3 : PNP N/O			KCP L631	
			4 : PNP N/C			KCP L641	
			7 : NPN N/O+N/C			KCP L671	
			8 : PNP N/O+N/C			KCP L681	
	$\mathrm{P}: 15 \mathrm{~mm}$	$6 \text { : M30 }$ Non flush	1 : NPN N/O	1:10-30VDC	Standard: 2m Cable	KCP P611	50 Hz
			2 : NPN N/C			KCP P621	
			3 : PNP N/O			KCP P631	
			4 : PNP N/C			KCP P641	
			7 : NPN N/O+N/C			KCP P671	
			8 : PNP N/O+N/C			KCP P681	
	$\mathrm{L}: 10 \mathrm{~mm}$	6 : M30 Flush	1 : NPN N/O	1:10-30VDC	3: M12 connector	KCP L611 3	50 Hz
			2 : NPN N/C			KCP L621 3	
			3 : PNP N/O			KCP L631 3	
			4 : PNP N/C			KCP L641 3	
			7 : NPN N/O+N/C			KCP L671 3	
			8 : PNP N/O+N/C			KCP L681 3	
	P : 15 mm	$6 \text { : M30 }$ Non flush	1 : NPN N/O	1:10-30VDC	3 : M12 connector	KCP P611 3	50 Hz
			2 : NPN N/C			KCP P621 3	
			3 : PNP N/O			KCP P631 3	
			4 : PNP N/C			KCP P641 3	
			7 : NPN N/O+N/C			KCP P671 3	
			8 : PNP N/O+N/C			KCP P681 3	
II-6 Indus	I Controls Catalog		www.kacon.co.kr		Rev. 2/14 Data subject may change without notice		

$K C R(P) \varnothing 12$

Flush

M12 connector Flush

$K C R(P) \varnothing 18$

Flush

M12 connector Flush

Non flush

M12 connector Non flush

M12 connector Non flush

Capacitive Proximity Sensor Metal Body Round
 KCR(P) Series

Dimension
$\operatorname{KCR}(P) \varnothing 30$

Flush

M12 connector Flush

Non flush

M12 connector Non flush

Capacitive Proximity Sensor

Square

KCS Series

- Glass
- Liquid
-Wood
- Plastic
- Paper
- Metal

Convenient Application setting with adjustable volume.

The best fit size for flat and narrow space with 7 mm high.

It is possible to install on the metal surface.

Part Number Description

* F : 7 Rectangular Model in under development
** Standard specification is not appeared in part number description

Guide to Selection

Size	O 3	O5	\square	O	-12	- 18	-25	- 30	O32	$\square 34$	$\square 40$	80
Available			\square							\square		
Sensing Distance	0.8 mm	1 mm	1.5 mm	2 mm	3 mm	4 mm	5 mm	7 mm	8 mm	10 mm	12 mm	15mm
Available										\bigcirc		
Sensing Distance	20 mm	22 mm	25 mm	30 mm	40 mm	50 mm	70 mm					
Available												
Output	NPN N/C	NPN N/O	PNP N/C	NPN N/O	N/C	N/O	NPN	+N/C	PNP	+N/C	Analog	NAMUR
Available	\bigcirc	\bigcirc	\bigcirc	\bigcirc								
Connector	2 m Cable			M8 Connector			M12 Connector			Screw Terminal		
Available	\bigcirc											
Power	7.7-9VDC		10-30VDC		15-30VDC		10-60VDC		20-240VAC		20-240VAC/DC	
Available			\bigcirc									
Rev. 2/14			www.kacon.co.kr				Industrial Controls Catalog					II-9

Capacitive Proximity Sensor

Square
 KCS Series

General Specification

Detectable Object	Conductive Material (Metal, Wood, Water...)
Differential Travel	4% to 20% of sensing distance
Indicators	LED
Cable Outlet	Standard : 2m Cable
Protection Circuits	Load short-circuit protection, Surge suppressor, Reverse polarity protection
Ambient Temperature	Operating $/$ Storage : -25 to $70^{\circ} \mathrm{C}$ (with no icing)
Ambient Humidity	Operating $/$ Storage : 35% to 95% (with no icing)
Temperature Influence	Max. $\pm 10 \%$ of sensing distance at $23^{\circ} \mathrm{C}$ in the temperature range of -25 to $70^{\circ} \mathrm{C}$
Voltage Influence	Max. $\pm \%$ of sensing distance at rated voltage in the rated voltage $\pm 15 \%$ range
Insulation Resistance	Min. $50 \mathrm{M} \Omega$ (at 500 VDC) between current-carrying parts and case
Vibration Resistance	Destruction : 10 to $55 \mathrm{~Hz}, 1.5-\mathrm{mm}$ double amplitude for 2 hours each in X, Y, and Z directions
Shock Resistance	Destruction : $500 \mathrm{~m} / \mathrm{s}^{2} 10$ times each in X, Y, and Z directions
Materials	Plastic
Degree of Protection	IP67

Characteristics

	DC 3wire		
Supply Voltage	$1: 10 \sim 30 \mathrm{VDC}$		
Current Consumption	Max. 10mA		
Voltage Drop	Residual voltage : Max. 1.5 V	Load current : Max. 200 mA.	$3:$ PNP N/O
Operation Mode	$1:$ NPN N/O $\quad 2:$ NPN N/C	$4:$ PNP N/C	
Dielectric Strength	$1,000 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ for 1 minute between current carry parts and case		
Maximum Switching Frequency	30 Hz		

| II - 10 | Industrial Controls Catalog | www.kacon.co.kr |
| :--- | :--- | :--- | | Rev. 2/14 |
| :--- |
| Data subject may change without notice. |

Product Selection

| | Sensing
 Model | Listance | Shape | Output | Power | Cable Outlet |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | | Response |
| :--- |
| 34 Square
 3-Wire(DC) |

Inductive Proximity Sensor
 Round-Standard Type
 KPR Series

Part Number Description

SERIES 1	2 (3)	(4) 5			
SERIES		KPR : Inductive proximity Round			
(1) Distance		A: 1 mm G: 4mm P: 15 mm	$\begin{aligned} & \mathrm{B}: 1 \mathrm{~mm} \\ & \mathrm{H}: 5 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & \mathrm{E}: 2 \mathrm{~mm} \\ & \mathrm{~K}: 8 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & \mathrm{F}: 3 \mathrm{~mm} \\ & \mathrm{~L}: 10 \mathrm{~mm} \end{aligned}$
(2) Size		$\begin{aligned} & 1: \not \varnothing_{3} \\ & 4: \varnothing 12 \end{aligned}$	$\begin{aligned} & 2: \varnothing 5 \\ & 5: \varnothing 18 \end{aligned}$	$\begin{aligned} & 3: \varnothing 8 \\ & 6: \varnothing 30 \end{aligned}$	
(3) Output		1 : NPN N/O (3 wire) 5 : N/O (2 wire)	2 : NPN N/C (3 wire) 6 : N/C (2 wire)	3 : PNP N/O (3 wire) 7 : NPN N/O+N/C (4 wire)	4 : PNP N/C (3 wire) 8 : PNP N/O+N/C (4 wire)
(4) Power		1:10~30VDC	2 : 7.7 ~ 9VDC*	5:20~240VAC	6:20~240VAC/DC
(5) Cable Outlet		Standard** : 2m Cable	2 : M8 connector	3 : M12 connector	

[^0]
Guide to Selection

Size	O	05	\square	08	-12	- 18	-25	- 30	032	$\square 34$	$\square 40$	80
Available	\bigcirc	0		\bigcirc	0	\bigcirc		\bigcirc				
Sensing Distance	0.8 mm	1 mm	1.5 mm	2 mm	3 mm	4 mm	5 mm	7 mm	8 mm	10 mm	12 mm	15 mm
Available	\bigcirc	\bigcirc		\bigcirc	\bigcirc	\bigcirc	0		0	\bigcirc		\bigcirc
Sensing Distance	20 mm	22 mm	25 mm	30 mm	40 mm	50 mm	70 mm					
Available												
Output	NPN N/C	NPN N/O	PNP N/C	NPN N/O	N/C	N/O	NPN	+N/C	PNP	+N/C	Analog	NAMUR
Available	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc						
Connector	2 m Cable			M8 Connector			M12 Connector			Screw Terminal		
Available	\bigcirc			\bigcirc			\bigcirc					
Power	7.7-9VDC		10-30VDC		15-30VDC		10-60VDC		20-240VAC		20-240VAC/DC	
Available			\bigcirc									
II-12	ndustrial Controls Catalog				www.kacon.co.kr				Rev. 2/14Data subject may change without notice.			

General Specification

Detectable Object	Ferrous metal (The sensing distance decreases with non-ferrous metal.)
Differential Travel	Max. 15% of sensing distance
Indicators	LED
Cable Outlet	Standard : 2 m Cable $2: \mathrm{M} 8$ connector $\quad 3:$ M12 connector
Protection Circuits	Load short-circuit protection, Surge suppressor, Reverse polarity protection
Ambient Temperature	Operating/Storage : -25 to $70^{\circ} \mathrm{C}$ (with no icing)
Ambient Humidity	Operating/Storage : 35% to 95% (with no icing)
Temperature Influence	Max. $\pm 10 \%$ of sensing distance at $23^{\circ} \mathrm{C}$ in the temperature range of -25 to $70^{\circ} \mathrm{C}$
Voltage Influence	Min. $50 \mathrm{M} \Omega$ (at 500 VDC) between current-carrying parts and case
Insulation Resistance	Destruction : 10 to $55 \mathrm{~Hz}, 1.5-\mathrm{mm}$ double amplitude for 2 hours each in X, Y, and Z directions
Vibration Resistance	Destruction : $1,000 \mathrm{~m} / \mathrm{s}^{2} 10$ times each in X, Y, and Z directions
Shock Resistance	Stainless(M3, M5 type only) / Nickel copper plated
Case Material	IP67
Degree of Protection	

Characteristics

Inductive Proximity Sensor
 Round-Standard Type
 KPR Series

Product Selection

Model	Sensing Distance	Shape	Output	Power	Cable Outlet	Part Number	Response Frequency
M3 Round 3-Wire(DC)	A: 1 mm	1 : M3 (Smooth Barrel) Flush	1 : NPN N/O	1:10-30VDC	Standard: 2 m Cable	KPR A111	$2,500 \mathrm{~Hz}$
			2 : NPN N/C			KPR A121	
			3 : PNP N/O			KPR A131	
			4 : PNP N/C			KPR A141	
M5 Round 3-Wire(DC)	B : 1 mm	$\begin{aligned} & 2 \text { : M5 } \\ & \text { Flush } \end{aligned}$	1 : NPN N/O	1:10-30VDC	Standard: 2m Cable	KPR B211	$2,500 \mathrm{~Hz}$
			2 : NPN N/C			KPR B221	
			3 : PNP N/O			KPR B231	
			4 : PNP N/C			KPR B241	
	B : 1 mm	$\begin{aligned} & 2 \text { : M5 } \\ & \text { Flush } \end{aligned}$	1 : NPN N/O	1:10-30VDC	2 : M8 connector	KPR B211 2	$2,500 \mathrm{~Hz}$
			2 : NPN N/C			KPR B221 2	
			3 : PNP N/O			KPR B231 2	
			4 : PNP N/C			KPR B241 2	
M8 Round 3-Wire(DC)	E : 2 mm	$\begin{aligned} & 3 \text { : M8 } \\ & \text { Flush } \end{aligned}$	1 : NPN N/O	1:10-30VDC	Standard: 2m Cable	KPR E311	$2,000 \mathrm{~Hz}$
			2 : NPN N/C			KPR E321	
			3 : PNP N/O			KPR E331	
			4 : PNP N/C			KPR E341	
	F : 3mm	$3 \text { : M8 }$ Non flush	1 : NPN N/O	1:10-30VDC	Standard: 2 m Cable	KPR F311	1,500Hz
			2 : NPN N/C			KPR F321	
			3 : PNP N/O			KPR F331	
			4 : PNP N/C			KPR F341	
	$\mathrm{E}: 2 \mathrm{~mm}$	$\begin{aligned} & 3 \text { : M8 } \\ & \text { Flush } \end{aligned}$	1 : NPN N/O	1:10-30VDC	2 : M8 connector	KPR E311 2	$2,000 \mathrm{~Hz}$
			2 : NPN N/C			KPR E321 2	
			3 : PNP N/O			KPR E331 2	
			4 : PNP N/C			KPR E341 2	
	$F: 3 \mathrm{~mm}$	$3 \text { : M8 }$ Non flush	1 : NPN N/O	1:10-30VDC	2 : M8 connector	KPR F311 2	1,500Hz
			2 : NPN N/C			KPR F321 2	
			3 : PNP N/O			KPR F331 2	
			4 : PNP N/C			KPR F341 2	
	E : 2 mm	$\begin{aligned} & 3 \text { : M8 } \\ & \text { Flush } \end{aligned}$	1 : NPN N/O	1:10-30VDC	3 : M12 connector	KPR E311 3	$2,000 \mathrm{~Hz}$
			2 : NPN N/C			KPR E321 3	
			3 : PNP N/O			KPR E331 3	
			4 : PNP N/C			KPR E341 3	
	F: 3mm	$3 \text { : M8 }$ Non flush	1: NPN N/O	1:10-30VDC	3 : M12 connector	KPR F311 3	1,500Hz
			2 : NPN N/C			KPR F321 3	
			3 : PNP N/O			KPR F331 3	
			4 : PNP N/C			KPR F341 3	
II-14	Industrial Controls Catalog		www.kacon.co.kr		Rev. 2/14Data subject may change without notice.		

Inductive Proximity Sensor
 Round-Standard Type
 KPR Series

Product Selection

Model	Sensing Distance	Shape	Output	Power	Cable Outlet	Part Number	Response Frequency
M18 Round 3,4-Wire(DC)	$\mathrm{H}: 5 \mathrm{~mm}$	$\begin{aligned} & 5 \text { : M18 } \\ & \text { Flush } \end{aligned}$	1 : NPN N/O	1:10-30VDC	Standard : 2 m Cable	KPR H511	1,000Hz
			2 : NPN N/C			KPR H521	
			3 : PNP N/O			KPR H531	
			4 : PNP N/C			KPR H541	
			7 : NPN N/O+N/C			KPR H571	
			8 : PNP N/O+N/C			KPR H581	
	$\mathrm{K}: 8 \mathrm{~mm}$	5 : M18 Non flush	1 : NPN N/O	1:10-30VDC	Standard : 2 m Cable	KPR K511	800 Hz
			2 : NPN N/C			KPR K521	
			3 : PNP N/O			KPR K531	
			4 : PNP N/C			KPR K541	
			7 : NPN N/O+N/C			KPR K571	
			8 : PNP N/O+N/C			KPR K581	
	$\mathrm{L}: 10 \mathrm{~mm}$	5 : M18 Non flush	1: NPN N/O	1:10-30VDC	Standard: 2 m Cable	KPR L511	500 Hz
			2 : NPN N/C			KPR L521	
			3 : PNP N/O			KPR L531	
			4 : PNP N/C			KPR L541	
	$\mathrm{H}: 5 \mathrm{~mm}$	$\begin{aligned} & 5 \text { : M18 } \\ & \text { Flush } \end{aligned}$	1 : NPN N/O	1:10-30VDC	3 : M12 connector	KPR H511 3	1,000Hz
			2 : NPN N/C			KPR H521 3	
			3 : PNP N/O			KPR H531 3	
			4 : PNP N/C			KPR H541 3	
			7 : NPN N/O+N/C			KPR H571 3	
			8 : PNP N/O+N/C			KPR H581 3	
	$\mathrm{K}: 8 \mathrm{~mm}$	5 : M18 Non flush	1 : NPN N/O	1:10-30VDC	3 : M12 connector	KPR K511 3	800 Hz
			2 : NPN N/C			KPR K521 3	
			3 : PNP N/O			KPR K531 3	
			4 : PNP N/C			KPR K541 3	
			7 : NPN N/O+N/C			KPR H571 3	
			8 : PNP N/O+N/C			KPR H581 3	
	$\mathrm{L}: 10 \mathrm{~mm}$	5 : M18 Non flush	1 : NPN N/O	1:10-30VDC	3 : M12 connector	KPR L511 3	500 Hz
			2 : NPN N/C			KPR L521 3	
			3 : PNP N/O			KPR L531 3	
			4 : PNP N/C			KPR L541 3	
II-16	Industrial Controls Catalog		www.kacon.co.kr		Rev. 2/14 Data subject may change		hout notice.

Model	Sensing Distance	Shape	Output	Power	Cable Outlet	Part Number	Response Frequency
M30 Round 3, 4-Wire(DC)	$\mathrm{L}: 10 \mathrm{~mm}$	$\begin{aligned} & 6 \text { : M30 } \\ & \text { Flush } \end{aligned}$	1 : NPN N/O	1:10-30VDC	Standard: 2 m Cable	KPR L611	500 Hz
			2 : NPN N/C			KPR L621	
			3 : PNP N/O			KPR L631	
			4 : PNP N/C			KPR L641	
			7 : NPN N/O+N/C			KPR L671	
			8 : PNP N/O+N/C			KPR L681	
	$\mathrm{P}: 15 \mathrm{~mm}$	$6 \text { : M30 }$ Non flush	1: NPN N/O	1:10-30VDC	Standard: 2 m Cable	KPR P611	300 Hz
			2 : NPN N/C			KPR P621	
			3 : PNP N/O			KPR P631	
			4 : PNP N/C			KPR P641	
			7 : NPN N/O+N/C			KPR P671	
			8 : PNP N/O+N/C			KPR P681	
	$\mathrm{L}: 10 \mathrm{~mm}$	6 : M30 Flush	1: NPN N/O	1:10-30VDC	3 : M12 connector	KPR L611 3	500 Hz
			2 : NPN N/C			KPR L621 3	
			3 : PNP N/O			KPR L631 3	
s			4 : PNP N/C			KPR L641 3	
			7 : NPN N/O+N/C			KPR L671 3	
			8 : PNP N/O+N/C			KPR L681 3	
	$\mathrm{P}: 15 \mathrm{~mm}$	$6 \text { : M30 }$ Non flush	1: NPN N/O	1:10-30VDC	3 : M12 connector	KPR P611 3	300 Hz
			2 : NPN N/C			KPR P621 3	
			3 : PNP N/O			KPR P631 3	
			4 : PNP N/C			KPR P641 3	
			7 : NPN N/O+N/C			KPR P671 3	
			8 : PNP N/O+N/C			KPR P681 3	

Inductive Proximity Sensor
 Round-Standard Type
 KPR Series

Dimension

KPR Ø8

Flush

Non flush

M8 connector Non flush

M12 connector Non flush

| II-18 | Industrial Controls Catalog | www.kacon.co.kr |
| :--- | :--- | :--- | | Rev. 2/14 |
| :--- |
| Data subject may change without notice. |

KPR Ø12

M12 connector Flush

M12 connector Non flush

KPR Ø18
Flush

M12 connector Flush

Non flush

M12 connector Non flush

KPR Ø30

M12 connector Flush

Non flush

M12 connector Non flush

Inductive Proximity Sensor
 Square-Standard Type
 KPS Series

Part Number Description

* Standard specification is not appeared in part number description

Guide to Selection

General Specification

Detectable Object	Ferrous metal (The sensing distance decreases with non-ferrous metal.)
Differential Travel	Max. 15% of sensing distance
Indicators	LED
Cable Outlet	Standard : 2 m Cable $\quad 3:$ M12 connector (KPS Q, KPS V only)
Protection Circuits	Load short-circuit protection, Surge suppressor, Reverse polarity protection
Ambient Temperature	Operating $/$ Storage : -25 to $70^{\circ} \mathrm{C}$ (with no icing)
Ambient Humidity	Operating $/$ Storage : 35% to 95% (with no icing)
Temperature Influence	Max. $\pm 10 \%$ of sensing distance at $23^{\circ} \mathrm{C}$ in the temperature range of -25 to $70^{\circ} \mathrm{C}$
Voltage Influence	Max. $\pm 1 \%$ of sensing distance at rated voltage in the rated voltage $\pm 15 \%$ range
Insulation Resistance	Min. $50 \mathrm{M} \Omega$ (at 500 VDC) between current-carrying parts and case
Vibration Resistance	Destruction : 10 to $55 \mathrm{~Hz}, 1.5-\mathrm{mm}$ double amplitude for 2 hours each in X, Y, and Z directions
Shock Resistance	Destruction : $1,000 \mathrm{~m} / \mathrm{s}^{2} 10$ times each in X, Y, and Z directions

Characteristics

Inductive Proximity Sensor
 Square-Standard Type
 KPS Series

Product Selection

Model	Sensing Distance	Shape	Output	Power	Cable Outlet	Part Number	Response Frequency
18 Square 3-Wire(DC)	H: 5 mm	A: 18sq Flush	1 : NPN N/O	1:10-30VDC	Standard: 2 m Cable	KPS HA11	1,000Hz
			2 : NPN N/C			KPS HA21	
			3 : PNP N/O			KPS HA31	
			4 : PNP N/C			KPS HA41	
	$\mathrm{K}: 8 \mathrm{~mm}$	A: 18sq Non flush	1 : NPN N/O	1:10-30VDC	Standard: 2m Cable	KPS KA11	1,000Hz
			2 : NPN N/C			KPS KA21	
			3 : PNP N/O			KPS KA31	
			4 : PNP N/C			KPS KA41	
25 Square 3-Wire(DC)	$\mathrm{J}: 7 \mathrm{~mm}$	B : 25sq Flush	1 : NPN N/O	1:10-30VDC	Standard: 2m Cable	KPS JB11	700 Hz
			2 : NPN N/C			KPS JB21	
			3 : PNP N/O			KPS JB31	
			4 : PNP N/C			KPS JB41	
	$\mathrm{L}: 10 \mathrm{~mm}$	B : 25sq Non flush	1 : NPN N/O	1:10-30VDC	Standard: 2m Cable	KPS LB11	700 Hz
			2 : NPN N/C			KPS LB21	
			3 : PNP N/O			KPS LB31	
			4 : PNP N/C			KPS LB41	
30 Square 3-Wire(DC)	$\mathrm{L}: 10 \mathrm{~mm}$	C: 30sq Flush	1 : NPN N/O	1:10-30VDC	Standard: 2 m Cable	KPS LC11	500 Hz
			2 : NPN N/C			KPS LC21	
			3 : PNP N/O			KPS LC31	
			4 : PNP N/C			KPS LC41	
	P : 15 mm	C: 30sq Non flush	1 : NPN N/O	1:10-30VDC	Standard : 2m Cable	KPS PC11	500 Hz
			2 : NPN N/C			KPS PC21	
			3 : PNP N/O			KPS PC31	
			4 : PNP N/C			KPS PC41	
40 Square 3-Wire(DC)	$Q: 20 \mathrm{~mm}$	D : 40sq Flush	1 : NPN N/O	1:10-30VDC	3 : M12 connector	KPS QD11 3	150 Hz
			2 : NPN N/C			KPS QD21 3	
			3 : PNP N/O			KPS QD31 3	
			4 : PNP N/C			KPS QD41 3	
	V : 35 mm	D : 40sq Non flush	1: NPN N/O	1:10-30VDC	3 : M12 connector	KPS VD11 3	150 Hz
			2 : NPN N/C			KPS VD21 3	
			3 : PNP N/O			KPS VD31 3	
			4 : PNP N/C			KPS VD41 3	
II-22	Industrial Controls Catalog		www.kacon.co.kr		Rev. 2/14 Data subject may change		hout notice.

KPS 30sq KPS 40sq

Inductive Proximity Sensor
 Round-Long Distance
 KPRD Series

Part Number Description

SERIES	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$

SERIES	KPRD : Inductive Proximity Long sensing round			
(1) Distance	$\begin{aligned} & \mathrm{G}: 4 \mathrm{~mm} \\ & \mathrm{R}: 22 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & \mathrm{K}: 8 \mathrm{~mm} \\ & \mathrm{~V}: 30 \mathrm{~mm} \end{aligned}$	$\mathrm{N}: 12 \mathrm{~mm}$	$\mathrm{P}: 15 \mathrm{~mm}$
(2) Size	3: $\varnothing 8$	4: $\varnothing 12$	$5: \varnothing 18$	$6: 830$
(3) Output	1 : NPN N/O (3 wire) 5 : N/O (2 wire)	2 : NPN N/C (3 wire) 6 : N/C (2 wire)	3 : PNP N/O (3 wire)	4 : PNP N/C (3 wire)
(4) Power	1:10~30VDC	2 : 7.7 ~ 9VDC*	6:20~240VAC/DC	
(5) Cable Outlet	Standard** 2 m Cable	3 : M12 connector		

* NUMAR(7.7 ~ 9VDC) model is under development.
** Standard specification is not appeared in part number description

Guide to Selection

Size	O 3	O5	\square	08	-12	- 18	-25	- 30	032	$\square 34$	$\square 40$	80
Available				\bigcirc	0	\bigcirc		\bigcirc				
Sensing Distance	0.8 mm	1 mm	1.5 mm	2 mm	3 mm	4 mm	5 mm	7 mm	8 mm	10 mm	12 mm	15 mm
Available						\bigcirc			0		\bigcirc	\bigcirc
Sensing Distance	20 mm	22 mm	25 mm	30 mm	40 mm	50 mm	70 mm					
Available		\bigcirc		\bigcirc								
Output	NPN N/C	NPN N/O	PNP N/C	NPN N/O	N/C	N/O	NPN	+N/C	PNP I	+N/C	Analog	NAMUR
Available	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc						
Connector	2 m Cable			M8 Connector			M12 Connector			Screw Terminal		
Available	\bigcirc			\bigcirc			\bigcirc					
Power	7.7-9VDC		10-30VDC		15-30VDC		10-60VDC		20-240VAC		20-240VAC/DC	
Available			\bigcirc									
II-24	Industrial Controls Catalog				www.kacon.co.kr				Rev. 2/14			

General Specification

Detectable Object	Ferrous metal (The sensing distance decreases with non-ferrous metal.)
Differential Travel	Max. 15% of sensing distance
Indicators	LED
Cable Outlet	Standard : 2 m Cable $3:$ M12 connector
Protection Circuits	Load short-circuit protection, Surge suppressor, Reverse polarity protection
Ambient Temperature	Operating/Storage : -25 to $70^{\circ} \mathrm{C}$ (with no icing)
Ambient Humidity	Operating/Storage : 35% to 95% (with no icing)
Temperature Influence	Max. $\pm 10 \%$ of sensing distance at $23^{\circ} \mathrm{C}$ in the temperature range of -25 to $70^{\circ} \mathrm{C}$
Voltage Influence	Max. $\pm 1 \%$ of sensing distance at rated voltage in the rated voltage $\pm 15 \%$ range
Insulation Resistance	Min. $50 \mathrm{M} \Omega$ (at 500 VDC) between current-carrying parts and case
Vibration Resistance	Destruction : 10 to $55 \mathrm{~Hz}, 1.5-\mathrm{mm}$ double amplitude for 2 hours each in X, Y, and Z directions
Case Material	Nickel copper plated
Shock Resistance	Destruction : $1,000 \mathrm{~m} / \mathrm{s}^{2} 10$ times each in X, Y, and Z directions

Characteristics

			DC 3/4 wire	DC 2 wire	$A C / D C 2$ wire	AC 2 wire
Supply Voltage		1:10~30VDC 3:15~30VDC			6:20~250VAC/DC	5:20~240VAC
Current Consumption			Max. 10mA	Max. 0.8 mA		-
Leakage Current			-	-		Max. 1 mA
Voltage Drop		Residual voltage : Max. 2V Load current : Max. 200 mA		Residual voltage : Max. 4V Load current : 3 to 100 mA	Residual voltage : Max. 5V for DC power Load current : 3 to 100 mA	Load current : 5 to 300 mA
Operation Mode		3wire	1: NPN N/O, 2 : NPN N/C, 3 : PNP N/O, 4 : PNP N/C	5:N/O, 6:N/C		
		4wire	7 : NPN N/O+N/C, $8:$ PNP N/O+N/C			
Dielectric Strength		1,000 VAC, $50 / 60 \mathrm{~Hz}$ for 1 minute between current carry parts and case			4,000 VAC, $50 / 60 \mathrm{~Hz}$ for 1 minute between current carry parts and case	
M8 Maximum Switching Frequency M12 M30	Non flush		600 Hz	-	-	-
	Flush		800 Hz	500 Hz	-	20Hz
	Non flush		400 Hz	200 Hz	-	
	Flush		500 Hz	300 Hz	$\begin{aligned} & \mathrm{AC}: 20 \mathrm{~Hz} \\ & \mathrm{DC}: 50 \mathrm{~Hz} \end{aligned}$	2 Hzz
	Non flush		300 Hz	150 Hz		
	Flush		400 Hz	200 Hz	$\begin{aligned} & \mathrm{AC}: 20 \mathrm{~Hz} \\ & \mathrm{DC}: 50 \mathrm{~Hz} \end{aligned}$	2 Hzz
	Non flush		$\begin{gathered} 22 \mathrm{~mm}: 200 \mathrm{~Hz} \\ 30 \mathrm{~mm}: 75 \mathrm{~Hz} \end{gathered}$	100 Hz		

Inductive Proximity Sensor
 Round-Long Distance
 KPRD Series

Product Selection

Model	Sensing Distance	Shape	Output	Power	Cable Outlet	Part Number	Response Frequency
M8 Round 3-Wire(DC)	$\mathrm{G}: 4 \mathrm{~mm}$	$3 \text { : M8 }$ Non flush	1 : NPN N/O	1:10-30VDC	Standard: 2 m Cable	KPRD G311	600 Hz
			2 : NPN N/C			KPRD G321	
			3 : PNP N/O			KPRD G331	
			4 : PNP N/C			KPRD G341	
	$\mathrm{G}: 4 \mathrm{~mm}$	3:M8 Non flush	1: NPN N/O	1:10-30VDC	2 : M8 connector	KPRD G311 2	600 Hz
			2 : NPN N/C			KPRD G321 2	
			3 : PNP N/O			KPRD G331 2	
			4 : PNP N/C			KPRD G341 2	
	$\mathrm{G}: 4 \mathrm{~mm}$	$3 \text { : M8 }$ Non flush	1 : NPN N/O	1:10-30VDC	3 : M12 connector	KPRD G311 3	600 Hz
			2 : NPN N/C			KPRD G321 3	
			3 : PNP N/O			KPRD G331 3	
			4 : PNP N/C			KPRD G341 3	
M12 Round 3-Wire(DC)	$\mathrm{G}: 4 \mathrm{~mm}$	$\begin{aligned} & 4: \text { M12 } \\ & \text { Flush } \end{aligned}$	1: NPN N/O	1:10-30VDC	Standard: 2m Cable	KPRD G411	800 Hz
			2 : NPN N/C			KPRD G421	
			3 : PNP N/O			KPRD G431	
			4 : PNP N/C			KPRD G441	
	$\mathrm{K}: 8 \mathrm{~mm}$	4 : M12 Non flush	1: NPN N/O	1:10-30VDC	Standard: 2 m Cable	KPRD K411	400 Hz
			2 : NPN N/C			KPRD K421	
			3 : PNP N/O			KPRD K431	
			4 : PNP N/C			KPRD K441	
	$\mathrm{G}: 4 \mathrm{~mm}$	$\begin{aligned} & 4 \text { : M12 } \\ & \text { Flush } \end{aligned}$	1: NPN N/O	1:10-30VDC	3 : M12 connector	KPRD G411 3	800 Hz
			2 : NPN N/C			KPRD G421 3	
			3 : PNP N/O			KPRD G431 3	
			4 : PNP N/C			KPRD G441 3	
	$\mathrm{K}: 8 \mathrm{~mm}$	4 : M12 Non flush	1 : NPN N/O	1:10-30VDC	3 : M12 connector	KPRD K411 3	400 Hz
			2 : NPN N/C			KPRD K421 3	
			3 : PNP N/O			KPRD K431 3	
			4 : PNP N/C			KPRD K441 3	

| II - 26 | Industrial Controls Catalog | www.kacon.co.kr |
| :--- | :--- | :--- | | Rev. 2/14 |
| :--- |
| Data subject may change without notice. |

Product Selection

Model	Sensing Distance	Shape	Output	Power	Cable Outlet	Part Number	Response Frequency
M18 Round 3-Wire(DC)	$\mathrm{K}: 8 \mathrm{~mm}$	$\begin{aligned} & 5 \text { : M18 } \\ & \text { Flush } \end{aligned}$	1 : NPN N/O	1:10-30VDC	Standard: 2 m Cable	KPRD K511	500 Hz
			2 : NPN N/C			KPRD K521	
			3 : PNP N/O			KPRD K531	
			4 : PNP N/C			KPRD K541	
	$\mathrm{N}: 12 \mathrm{~mm}$	5 : M18 Non flush	1 : NPN N/O	1:10-30VDC	Standard: 2m Cable	KPRD N511	300 Hz
			2 : NPN N/C			KPRD N521	
			3 : PNP N/O			KPRD N531	
			4 : PNP N/C			KPRD N541	
	$\mathrm{K}: 8 \mathrm{~mm}$	5 : M18 Flush	1 : NPN N/O	1:10-30VDC	3 : M12 connector	KPRD K511 3	500 Hz
			2 : NPN N/C			KPRD K521 3	
			3 : PNP N/O			KPRD K531 3	
			4 : PNP N/C			KPRD K541 3	
	$\mathrm{N}: 12 \mathrm{~mm}$	5 : M18 Non flush	1 : NPN N/O	1:10-30VDC	3 : M12 connector	KPRD N511 3	300 Hz
			2 : NPN N/C			KPRD N521 3	
			3 : PNP N/O			KPRD N531 3	
			4 : PNP N/C			KPRD N541 3	
M30 Round 3-Wire(DC)	$P: 15 \mathrm{~mm}$	$6 \text { : M30 }$ Flush	1 : NPN N/O	1:10-30VDC	Standard: 2m Cable	KPRD P611	400 Hz
			2 : NPN N/C			KPRD P621	
			3 : PNP N/O			KPRD P631	
			4 : PNP N/C			KPRD P641	
	V : 30 mm	6 : M30 Non flush	1 : NPN N/O	1:10-30VDC	Standard: 2m Cable	KPRD V611	200 Hz
			2 : NPN N/C			KPRD V621	
			3 : PNP N/O			KPRD V631	
			4 : PNP N/C			KPRD V641	
	P : 15 mm	$\begin{aligned} & 6 \text { : M30 } \\ & \text { Flush } \end{aligned}$	1 : NPN N/O	1:10-30VDC	3 : M12 connector	KPRD P611 3	400 Hz
			2 : NPN N/C			KPRD P621 3	
			3 : PNP N/O			KPRD P631 3	
			4 : PNP N/C			KPRD P641 3	
	V : 30 mm	6 : M30 Non flush	1 : NPN N/O	1:10-30VDC	3 : M12 connector	KPRD V611 3	200 Hz
			2 : NPN N/C			KPRD V621 3	
			3 : PNP N/O			KPRD V631 3	
			4 : PNP N/C			KPRD V641 3	

Inductive Proximity Sensor
 Round-Long Distance
 KPRD Series

KPRD ø8

Flush

M8 connector Flush

M12 connector Flush

Non flush

M8 connector Non flush

M12 connector Non flush

KPRD Ø12

Flush

M12 connector Flush

Non flush

M12 connector Non flush

KPRD Ø18

Flush

Non flush

M12 connector Flush

M12 connector Non flush

KPRD Ø30

Non flush

M12 connector Non flush

Inductive Proximity Sensor
 Round-All Metal Body
 KPRM Series

Part Number Description

SERIES (1) (3) (6) $\boldsymbol{\theta}$

SERIES	KPRM : Inductive Proximity Metal head round			
(1) Dis	E: 2 mm	$\mathrm{G}: 4 \mathrm{~mm}$	$\mathrm{H}: 5 \mathrm{~mm}$	
(1)	$\mathrm{K}: 8 \mathrm{~mm}$	$\mathrm{L}: 10 \mathrm{~mm}$	P: 15 mm	
(2) Size	4: 012	$5: \varnothing 18$	$6: \varnothing 30$	
(3) Output	1 : NPN N/O (3 wire)	2 : NPN N/C (3 wire)	3 : PNP N/O (3 wire)	4 : PNP N/C (3 wire)
(4) Power	1:10 ~ 30VDC			
(5) Cable Outlet	Standard* : 2 m Cable	3 : M12 connector		

* Standard specification is not appeared in part number description

Guide to Selection

General Specification

Detectable Object	Ferrous metal (The sensing distance decreases with non-ferrous metal.)
Differential Travel	Max. 15% of sensing distance
Indicators	LED
Cable Outlet	Standard : 2 m PUR cable $3:$ M12 connector
Protection Circuits	Load short-circuit protection, Surge suppressor, Reverse polarity protection
Ambient Temperature	Operating/Storage : -30 to $85^{\circ} \mathrm{C}$ (with no icing)
Ambient Humidity	Operating/Storage : 35% to 95% (with no icing)
Temperature Influence	Max. $\pm 10 \%$ of sensing distance at $23^{\circ} \mathrm{C}$ in the temperature range of -25 to $70^{\circ} \mathrm{C}$
Voltage Influence	Max. $\pm 1 \%$ of sensing distance at rated voltage in the rated voltage $\pm 15 \%$ range
Insulation Resistance	Min. $50 \mathrm{M} \Omega$ (at 500 VDC) between current-carrying parts and case
Vibration Resistance	Destruction : 10 to $55 \mathrm{~Hz}, 1.5-\mathrm{mm}$ double amplitude for 2 hours each in X, Y, and Z directions
Case Material	Stainless
Shock Resistance	Destruction : $1,000 \mathrm{~m} / \mathrm{s}^{2} 10$ times each in X, Y, and Z directions

Characteristics

DC 3wire		
Supply Voltage	1:10~30VDC	
Current Consumption	Max. 10 mA	
Voltage Drop	Residual voltage : Max. 2V Load current : Max. 200 mA	
Operation Mode	1:NPN /O 2:NPN /C 3:PNPN/O	4 : PNP N/C
Dielectric Strength	1,000 VAC, $50 / 60 \mathrm{~Hz}$ for 1 minute between current carry parts and case	
Maximum Switching Frequency	$300 \mathrm{~Hz}(\mathrm{KPRRM} \mathrm{Ø30} \mathrm{:} 150 \mathrm{~Hz}$)	

Inductive Proximity Sensor
 Round-All Metal Body
 KPRM Series

Product Selection

Product Selection

Model	Sensing Distance	Shape	Output	Power	Cable Outlet	Part Number	Response Frequency
M30 Round 3-Wire(DC)	$\mathrm{L}: 10 \mathrm{~mm}$	$\begin{aligned} & 6 \text { : M30 } \\ & \text { Flush } \end{aligned}$	1 : NPN N/O	1:10-30VDC	Standard : 2 m Cable	KPRM L611	150 Hz
			2 : NPN N/C			KPRM L621	
			3 : PNP N/O			KPRM L631	
			4 : PNP N/C			KPRM L641	
	P : 15 mm	$6 \text { : M30 }$ Non flush	1 : NPN N/O	1:10-30VDC	Standard: 2 m Cable	KPRM P611	150 Hz
			2 : NPN N/C			KPRM P621	
			3 : PNP N/O			KPRM P631	
			4 : PNP N/C			KPRM P641	
	$\mathrm{L}: 10 \mathrm{~mm}$	$\begin{aligned} & 6 \text { : M30 } \\ & \text { Flush } \end{aligned}$	1 : NPN N/O	1:10-30VDC	3 : M12 connector	KPRM L611 3	150 Hz
			2 : NPN N/C			KPRM L621 3	
			3 : PNP N/O			KPRM L631 3	
			4 : PNP N/C			KPRM L641 3	
	P : 15 mm	$6 \text { : M30 }$ Non flush	1 : NPN N/O	1:10-30VDC	3 : M12 connector	KPRM P611 3	150 Hz
			2 : NPN N/C			KPRM P621 3	
			3 : PNP N/O			KPRM P631 3	
			4 : PNP N/C			KPRM P641 3	

Inductive Proximity Sensor
 Round-All Metal Body
 KPRM Series

Dimension

KPRM Ø12

Flush

M12 connector Flush

KPRM Ø18

M12 connector Flush

Non flush

M12 connector Non flush

KPRM Ø30

Non flush

M12 connector Flush

M12 connector Non flush

| II -34 | Industrial Controls Catalog | www.kacon.co.kr |
| :--- | :--- | :--- | | Rev. 2/14 |
| :--- |
| Data subject may change without notice. |

Inductive Proximity Sensor
 Round-Tefron coated

KPRT Series

Part Number Description

* Standard specification is not appeared in part number description

Guide to Selection

Size	O 3	O5	\square	O	-12	- 18	-25	- 30	032	$\square 34$	$\square 40$	80
Available					0	\bigcirc		\bigcirc				
Sensing Distance	0.8 mm	1 mm	1.5 mm	2 mm	3 mm	4 mm	5 mm	7 mm	8 mm	10 mm	12 mm	15 mm
Available					0		\bigcirc			\bigcirc		
Sensing Distance	20 mm	22 mm	25 mm	30 mm	40 mm	50 mm	70 mm					
Available												
Output	NPN N/C	NPN N/O	PNP N/C	NPN N/O	N/C	N/O	NPN	+N/C	PNP	- $/ \mathrm{C}$	Analog	NAMUR
Available	\bigcirc	\bigcirc	\bigcirc	\bigcirc								
Connector	2 m Cable			M8 Connector			M12 Connector			Screw Terminal		
Available	\bigcirc						\bigcirc					
Power	7.7-9VDC		10-30VDC		15-30VDC		10-60VDC		20-240VAC		20-240VAC/DC	
Available			\bigcirc									
Rev. 2/14					www.kacon.co.kr		Industrial Controls Catalog					II-35

Inductive Proximity Sensor
 Round-Tefron coated
 KPRT Series

General Specification

Detectable Object	Ferrous metal (The sensing distance decreases with non-ferrous metal.)
Differential Travel	Max. 15% of sensing distance
Indicators	LED
Cable Outlet	Load short-circuit protection, Surge suppressor, Reverse polarity protection 2 m PUR cable $3:$ M12 connector
Protection Circuits	Operating/Storage : -30 to $85^{\circ} \mathrm{C}$ (with no icing)
Ambient Temperature	Operating $/$ Storage : 35% to 95% (with no icing)
Ambient Humidity	Max. $\pm 10 \%$ of sensing distance at $23^{\circ} \mathrm{C}$ in the temperature range of -25 to $70^{\circ} \mathrm{C}$
Temperature Influence	Max of sensing distance at rated voltage in the rated voltage $\pm 15 \%$ range
Voltage Influence	Min. $50 \mathrm{M} \Omega$ (at 500 VDC) between current-carrying parts and case
Insulation Resistance	Destruction : 10 to $55 \mathrm{~Hz}, 1.5-\mathrm{mm}$ double amplitude for 2 hours each in X, Y, and Z directions
Vibration Resistance	Destruction : $1,000 \mathrm{~m} / \mathrm{s}^{2} 10$ times each in X, Y, and Z directions
Shock Resistance	

Characteristics

DC 3wire						
Supply Voltage			1:10~30VDC			
Current Consumption			Max. 15 mA			
Voltage Drop			Residual voltage : Max. 2V Load current : Max. 200 mA			
Operation Mode			1: NPN N/O	2 : NPN N/C	3 : PNP N/O	4 : PNP N/C
Dielectric Strength			1,000 VAC, $50 / 60 \mathrm{~Hz}$ for 1 minute between current carry parts and case			
Maximum Switching Frequency	M12	Flush	800 Hz			
	M18	Flush	800 Hz			
	M30	Flush	$500 \mathrm{~Hz}$			

| II - 36 | Industrial Controls Catalog | www.kacon.co.kr |
| :--- | :--- | :--- | | Rev. 2/14 |
| :--- |
| Data subject may change without notice. |

Product Selection

Model	Sensing Distance	Shape	Output	Power	Cable Outlet	Part Number	Response Frequency
M12 Round Tefron coating 3-wire(DC)	F: 3 mm	$\begin{aligned} & 4 \text { : M12 } \\ & \text { Flush } \end{aligned}$	1 : NPN N/O	1:10-30VDC	Standard: 2m Cable	KPRT F411	800 Hz
			2 : NPN N/C			KPRT F421	
			3 : PNP N/O 4 : PNP N/C			KPR TF431	
						KPRT F441	
	$F: 3 \mathrm{~mm}$	$\begin{aligned} & 4 \text { : M12 } \\ & \text { Flush } \end{aligned}$	1 : NPN N/O	1:10-30VDC	3 : M12 connector	KPRT F411 3	800 Hz
			2 : NPN N/C			KPRT F421 3	
			3 : PNP N/O			KPRT F431 3	
			4 : PNP N/C			KPRT F441 3	
M18 Round Tefron coating 3-wire(DC)	$\mathrm{H}: 5 \mathrm{~mm}$	5 : M18 Flush	1 : NPN N/O	1:10-30VDC	Standard : 2 m Cable	KPRT H511	1000 Hz
			2 : NPN N/C			KPRT H521	
			3 : PNP N/O			KPRT H531	
			4 : PNP N/C			KPRT H541	
	H: 5 mm	$\begin{aligned} & 5 \text { : M18 } \\ & \text { Flush } \end{aligned}$	1 : NPN N/O	1:10-30VDC	3 : M12 connector	KPRT H511 3	1000 Hz
			2 : NPN N/C			KPRT H521 3	
			3 : PNP N/O			KPRT H531 3	
			4 : PNP N/C			KPRT H541 3	
M30 Round Tefron coating	$\mathrm{L}: 10 \mathrm{~mm}$	$\begin{aligned} & 6 \text { : M30 } \\ & \text { Flush } \end{aligned}$	1 : NPN N/O	1:10-30VDC	Standard: 2 m Cable	KPRT L611	500 Hz
3-wire(DC)			2 : NPN N/C			KPRT L621	
			3 : PNP N/O			KPRT L631	
			4 : PNP N/C			KPRT L641	
	L : 10 mm	$\begin{aligned} & 6 \text { : M30 } \\ & \text { Flush } \end{aligned}$	1 : NPN N/O	1:10-30VDC	3 : M12 connector	KPRT L611 3	500 Hz
			2 : NPN N/C			KPRT L621 3	
			3 : PNP N/O			KPRT L631 3	
			4 : PNP N/C			KPRT L641 3	

Inductive Proximity Sensor
 Round-Tefron coated
 KPRT Series

Dimension

KPRT Ø12
Flush

M12 connector Flush

KPRT Ø18

M12 connector Flush

Non flush

M12 connector Non flush

KPRT Ø30

Non flush

M12 connector Flush

M12 connector Non flush

| II -38 | Industrial Controls Catalog | www.kacon.co.kr |
| :--- | :--- | :--- | | Rev. 2/14 |
| :--- |
| Data subject may change without notice. |

Technical Data

Proximity Sensor

Overview

Proximity Sensor includes all sensors that perform non-contact Detection in comparison to sensors, such as limit switches, that detect objects by physically contacting them. Proximity Sensors convert information on the movement or presence of an object into an electrical signal. There are three types of Detection systems that do this conversion : systems that use the eddy currents that are generated in metallic detectable objects by electromagnetic induction, systems that detect changes in electrical capacity when approaching the detectable object, and systems that use magnets and reed switches.

Features

(1) Proximity Sensors detect an object without touching it, and they therefore do not cause abrasion or damage to the object.
Devices such as limit switches detect an object by contacting it, but Proximity Sensors are able to detect the presence of the object electrically, without having to touch it.
(2) No contacts are used for output, so the Sensor has a longer service life (excluding sensors that use magnets).
Proximity Sensors use semiconductor outputs, so there are no contacts to affect the service life.
(3) Unlike optical Detection methods, Proximity Sensors are suitable for use in locations where water or oil is used.
Detection takes place with almost no effect from dirt, oil, or water on the object being detected.
(4) Proximity Sensors provide high-speed response, compared with switches that require physical contact For information on high-speed response, refer to Explanation of Terms on glossary page.
(5) Proximity Sensors are not affected by colors. Proximity Sensors detect the physical changes of an object, so they are almost completely unaffected by the object's surface color.
(6) Unlike switches, which rely on physical contact, Proximity Sensors are affected by ambient temperatures, surrounding objects, and other Sensors. Both Inductive and Capacitive Proximity Sensors are affected by interaction with other Sensors. Because of this, care must be taken when installing them to prevent mutual interference Care must also be taken to prevent the effects of surrounding metallic objects on Inductive Proximity Sensors, and to prevent the effects of all surrounding objects on Capacitive Proximity Sensors.

Operating Principles

Principle of Inductive Sensors

Inductive Proximity Sensors detect magnetic loss due to eddy currents that are generated on a conductive surface by an external magnetic field. An AC magnetic field is generated on the Detection coil, and changes in the impedance due to eddy currents generated on a metallic object are detected.

Other methods include Aluminum-detecting Sensors, which detect the phase component of the frequency, and All-metal Sensors, which use a working coil to detect only the changed component of the impedance. There are also Pulseresponse Sensors, which generate an eddy current in pulses and detect the time change in the eddy current with the voltage induced in the coil.

The detectable object and Sensor form what appears to be a transformer-like relationship.

The transformer-like coupling condition is replaced by impedance changes due to eddy-current losses

The impedance changes can be viewed as changes in the resistance that is inserted in series with the detectable object.

Principle of Capacitive Sensors

<Figures1>

<Figures2>

Capacitive Proximity Sensors detect changes in the capacitance between the detectable object and the Sensor. The amount of capacitance varies depending on the size and distance of the detectable object. An ordinary Capacitive Proximity Sensor is similar to a capacitor with two parallel plates, where the capacity of the two plates is detected. One of the plates is the object being measured (with an imaginary ground), and the other is the Sensor's sensing surface. The changes in the capacity generated between these two poles are detected.

The objects that can be detected depend on their dielectric constant, but they include resin and water in addition to metals.

Technical Data

Proximity Sensor

Usage Guidance

Standard Object

- A detectable object that serves as a reference for measuring basic performance, and that is made of specified materials and has a specified shape and dimensions

Sensing Distance

- The distance from the reference position (reference surface) to the measured operation (reset) when the standard detectable object is moved by the specified method.

Effective Operating Distance

- The distance from the reference surface that allows stable use, including the effects of temperature and voltage, to the (standard)detectable object transit position.
- This is approximately 70% to 80% of the normal (rated) sensing distance.

Differential Travel

- With respect to the distance between the standard detectable object and the Sensor, the difference between the distance at which the Sensor operates and the distance at which the Sensor resets.

Response Time

- t1 : The interval from the point when the standard detectable object moves into the sensing area and the Sensor activates, to the point when the output turns ON.
- t2 : The interval from the point when the standard detectable object moves out of the Sensor sensing area to the point when the Sensor output turns OFF.

Response Frequency

- The number of Detection repetitions that can be output per second when the standard detectable object is repeatedly brought into proximity.
- See the accompanying diagram for the measuring method

| II - 40 | Industrial Controls Catalog | www.kacon.co.kr |
| :--- | :--- | :--- | | Rev. 2/14 |
| :--- |
| Data subject may change without notice. |

Flush

- With a FlushSensor, magnetic flux is concentrated in front of the Sensor and the sides of the Sensor coil are covered with metal.
- The Sensor can be mounted by embedding it into metal.

Non flush

- With an Non flush Sensor, magnetic flux is spread widely in front of the Sensor and the sides of the Sensor coil are not covered with metal.
- This model is easily affected by surrounding metal objects (magnetic objects), so care must be taken in selecting the mounting location.

Interpreting Engineering Data

Effects of Detectable object Size and Material

Distance Table by Material

- It shows changes in the sensing distance due to material of the detectable object. Refer to this data when using the same Sensor to detect various different detectable objects

Leakage Current Characteristics

- In contrast with contact-type limit switches, which have physical contacts, leakage cur-rent in a 2-wire Proximity Sensor is related to an electrical switch that consists of transis-tors and other components. This graph indi-cates the leakage current characteristics caused by transistors in the output section of the Sensor.
- Generally speaking, the higher the voltage, the larger the leakage current. Because leak-age current flows to the load connected to the Proximity Sensor, care must be taken to select a load that will not cause the Sensor to operate from the leakage current.
- Be careful of this factor when replacing a limit switch, micro-switch, or other switch with a Proximity Sensor.

Residual Voltage Characteristics

- Similar to leakage current characteristics, re-sidual voltage is something that occurs due to electrical switches that are comprised of tran-sistors and other components. For example, whereas the voltage in a normally open switch should be $O V$ in the ON state, and the same as the power supply voltage in the OFF state, residual voltage refers to a certain level of voltage remaining in the switch. Be careful of this factor when replacing a limit switch, micro-switch, or other switch with a Proximity Sensor.

General Precautions

For precautions on individual products, refer to the Safety Precautions in individual product information.

WARNING

- These products cannot be used in safety devices for presses or other safety devices used to protect human life.
- These products are designed for use in applications for sensing workpiecs and workers that do not affect safety.

Precautions for Safe use

- To ensure safety, always observe the following precautions.

Wiring Instruction

Power Supply Voltage

Do not use a voltage that exceeds the operating voltage range. Applying a voltage that is higher than the operating voltage range, or using an AC power supply (100 VAC or higher) for a Sensor that requires a DC power supply may cause explosion or burning.
(1) DC 3-Wire NPN Output Sensors (2) DC 2-Wire Sensors

Technical Data

Proximity Sensor

Wiring Instruction

Load short-circuiting

- Do not short-circuit the load. Explosion or burning may result.
- The load short-circuit protection function operates when the power supply is connected with the correct polarity and the power is within the rated voltage range.

(1) DC 3-Wire NPN Output Sensors
 (2) DC 2-Wire Sensors

- Even with the load short-circuit protection function, protection will not be provided when a load short circuit occurs if the power supply polarity is not correct.

Incorrect Wiring

Be sure that the power supply polarity and other wiring is correct. Incorrect wiring may cause explosion or burning.

DC 3-Wire NPN Output Sensors

Cable outlet without a Load

If the power supply is connected directly without a load, the internal elements may explode or burn. Be sure to insert a load when connecting the power supply.
(1) DC 2-Wire Sensors
(2) AC 2-Wire Sensors

- Even with the load short-circuit protection function, protection will not be provided if both the power supply polarity is incorrect

Operating Environment

Do not use the Sensor in an environment where there are explosive or combustible gases.

Precaution for Safe use

The following conditions must be considered to understand the conditions of the application and location as well as the relation to control equipment.

Model Selection

Item

Check points

Detectable object and operating condition of Proximity Sensor

Size of Detectable object

In general, if the object is smaller than the standard detectable object, the sensing distance decreases.
Design the setup for an object size that is the same or greater than the standard detectable object size from the graphs showing the detectable object size and sensing distance. When the size of the standard detectable object is the same or less than the size of the standard detectable object,select a sensing distance with sufficient leeway.

Thickness of Detectable object

The thickness of ferrous metals (iron, nickel, etc.) must be 1 mm or greater. For non-magnetic metal, a sensing distance equivalent to a magnetic body can be obtained when the coating thickness is 0.01 mm or less.

When the coating is extremely thin and is not conductive, such as a vacuum deposited film, Detection is not possible.
Influence of Plating If the detectable object is plated, the sensing distance will change (see the table below).

Effect of Plating (Typical)

Thickness and base material of plating	Detectable performance (\%)
Non plating steel(Fe)	100
Zn 5 to $15 \mu \mathrm{~m}$	90 to 120
Cd 5 to $15 \mu \mathrm{~m}$	100 to 110
Ag 5 to $15 \mu \mathrm{~m}$	60 to 90
Cu 10 to $20 \mu \mathrm{~m}$	70 to 95
Cu 5 to $15 \mu \mathrm{~m}$	-
$\mathrm{Cu}(5$ to $10 \mu \mathrm{~m})+\mathrm{Ni}(10$ to $20 \mu \mathrm{~m})$	70 to 95
$\mathrm{Cu}(5$ to $10 \mu \mathrm{~m})+\mathrm{Ni}(10 \mu \mathrm{~m})+\mathrm{Cr}(0.3 \mu \mathrm{~m})$	70 to 95

Technical Data

Proximity Sensor

Countermeasures for Leakage Current (Examples)

AC 2-Wire Model

Connect a bleeder resistor to bypass the leakage current flowing in the load so that the current flowing through the load is less than the load reset current. When using an AC 2-Wire Sensor, connect a bleeder resistor so that the Proximity Sensor current is at least 10 mA , and the residual load voltage when the Proximity Sensor is OFF is less than the load reset voltage.

Calculate the bleeder resistance and allowable power using the following equation.

$$
R \leq \frac{V}{10-1}(k \Omega) \quad P>\frac{V^{2}}{R}(m W)
$$

P : Watts of bleeder resistance (the actual number of watts used should be several times this number)
I : Load current (mA)
It is recommend that leeway be included in the actual values used. For 100 VAC, use $10 \mathrm{k} \Omega$ or less and $3 \mathrm{~W}(5 \mathrm{~W}$) or higher, and for 200 VAC , use $20 \mathrm{k} \Omega$ or less and $10 \mathrm{~W}(20 \mathrm{~W})$ or higher. If the effects of heat generation are a problem, use the number of watts in parentheses () or higher.

DC 2-Wire Model

Connect a bleeder resistor to bypass the leakage current flowing in the load, and design the load current so that (leakage current) \times (load input impedance) < reset voltage.

Calculate the bleeder resistance and allowable power using the following equation.

$$
R \leq \frac{V}{i B R-i L}(k \Omega) \quad P>\frac{V^{2}}{R}(m W)
$$

P : Watts of bleeder resistance (the actual number of watts used should be several times this number)
iBR : Leakage current of Proximity Sensor (mA)
iL : Load reset current (mA)
It is recommend that leeway be included in the actual values used.For 12 VDC, use $15 \mathrm{k} \Omega$ or less and 450 mW or higher, and for 24 VDC , use $30 \mathrm{k} \Omega$ or less and 0.1 W or higher.

Photo Electric Sensor

KE Series

Sensitivity adjustable

Reverse Cable outlet protection Short circuit protection

$\mathrm{N} / \mathrm{O}+\mathrm{N} / \mathrm{C}$ output

Enhanced waterproof design

Part Number Description

\section*{| SERIES | (2) | (2) |
| :--- | :--- | :--- | :--- | :--- |}

SERIES	KER	$\varnothing 18$ R		$\begin{aligned} & \text { KES } \\ & \text { KESB } \end{aligned}$	$32 \times 20 \mathrm{~mm}$ Mini Ractangular type Red Beam type
(1) Sensing Distance	KER	$\begin{aligned} & F: 10 m \\ & E: 3 m \\ & C: 60 \end{aligned}$	+ Receiver type) reflective) iffuse reflective)	KES(B)	F : 10m (Emitter + Receiver type) E:3m (Retro reflective) D : 800mm (Diffuse reflective) A : 150mm (Backgound suppression)
(2) Output	$7: N P N N / O+N / C$ (4 wire) $8: P N P N / O+N / C$ (4 wire)				
(3) Cable Outlet	Standard* : 2m Cable		2 : M8 pig tail conn		3 : M12 connector
(4) Power	1:10~30VDC				

*Standard specification is not appeared in part number description
General Specification

Light Source (Wave Length)	Infrared LED (850 nm), Red optional
Power Supply Voltage	10 to 30 VDC $\pm 10 \%$ including 10% (p-p) max. ripple
Output Type	$\mathrm{N} / \mathrm{O}+\mathrm{N} / \mathrm{C}$ Output (NPN / PNP)
Circuit Protection	Protection from reversed power supply Cable outlet, output short-circuit, mutual interference, and reversed output Cable outlet
Sensitivity	Adjustable
Response Time	Operation or reset : Max. 1 ms
Ambient Illumination	Incandescent lamp : Max. 3,000 Ix
(Receiver Side)	Sunlight : Max. $10,000 \mathrm{~lx}$
Ambient Temperature	Operating : $-25^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C} /$ Storage : $-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (with no icing)
Ambient Humidity	Operating : 35% to $85 \% /$ Storage : 35% to 95% (with no icing)
Dielectric Strength	1,000 VAC, $50 / 60 \mathrm{~Hz}$ for 1 min between charged parts and case
Vibration Resistance	Destruction : 10 to $55 \mathrm{~Hz}, 1.5-\mathrm{mm}$ double amplitude or $300 \mathrm{~m} / \mathrm{s}^{2}$ for 2 hours each in X, Y, and Z directions
Shock Resistance	Destruction : $500 \mathrm{~m} / \mathrm{s}^{2} 3$ times each in X, Y, and Z directions
Indicator Operation	LED on : Power on $/ \mathrm{Object} \mathrm{detecting}$, LED Flickering : Object is in unclear range. LED off : Power off $/ \mathrm{No}$ object detecting
Accessories	Instruction manual (The Reflector and Mounting Bracket are not provided with any of the above models.) Screw for potencial meter

Photo Electric Sensor

KE Series

Characteristics

KER Series				
Sensing Method		Emitter + Receiver	Retro reflective	Diffuse reflective
Sensing Distance		10 m	3 m	600 mm
Operating Spot		1.2 m	350 mm	10 mm
Current Consumption		Emitter : Max. 20 mA Receiver : Max. 25 mA	Max. 15 mA	
Maximum Response Frequency		$200 \mathrm{~Hz}(5 \mathrm{~ms})$		
Material		Nickel plated copper, PMMA		
Maximum Response Frequency		$200 \mathrm{~Hz}(5 \mathrm{~ms})$		
Cable Outlet		Standard : 2 m Cable, 3 : M12 4-pin connector		
Control Output	Load Current	Max. 200mA		
	Residual Voltage	$\begin{aligned} & \text { Load current 0~10 mA : Max. } 1 \mathrm{~V} \\ & \text { Load current 10~200 mA : Max. } 2 \mathrm{~V} \end{aligned}$		
Degree of Protection		IP67		

KES(B) series
\(\left.\begin{array}{lc|c|c}\hline Sensing Method \& Emitter + Receiver \& Retro reflective \& Diffuse reflective

\hline Sensing Distance \& 10 \mathrm{~m} \& 3 \mathrm{~m} \& 150 \mathrm{~mm} (Background suppression)

800 \mathrm{~mm}\end{array}\right]\)\begin{tabular}{l}
10 mm

\hline Operating Spot

\hline Current Consumption

\hline | Emitter : Max. 20 mA |
| :--- |
| Receiver : Max. 25 mA |

\hline | Maximum Response |
| :--- |
| Frequency |

\hline Material

\hline Maximum Response

Frequency
\end{tabular}

| II - 46 | Industrial Controls Catalog | www.kacon.co.kr |
| :--- | :--- | :--- | | Rev. 2/14 |
| :--- |
| Data subject may change without notice. |

Product Selection

Model	Sensing Distance	Output	Power	Connector	Part Number
$\begin{aligned} & \text { KER } \\ & \text { 4-wire(DC) } \end{aligned}$	F : 10m (Emitter + Receiver)	7 : NPN N/O + N/C	1:10-30 VDC	Standard 2m Cable	KER F71
	E : 3m (Retro diffuse)				KER E71
	C : 600mm (Diffuse reflective)				KER C71
	F : 10m (Emitter + Receiver)	7 : NPN N/O + N/C	1:10-30 VDC	3 : M12 connector	KER F71 3
	E: 3m (Retro diffuse)				KER E71 3
	C : 600mm (Diffuse reflective)				KER C71 3
$\begin{aligned} & \text { KES } \\ & \text { 4-wire(DC) } \end{aligned}$	F : 10m (Emitter + Receiver)	7 : NPN N/O + N/C	1:10-30 VDC	Standard 2m Cable	KES F71
	E: 3m (Retro diffuse)				KES E71
	D : 800mm (Diffuse reflective)				KES D71
	A: 150mm (Diffuse reflective Background suppression)				KES A71
	F: 10m (Emitter + Receiver)	7 : NPN N/O + N/C	1:10-30 VDC	2 : M8 pig tail connector	KES F71 2
	E: 3m (Retro diffuse)				KES E71 2
	D : 800mm (Diffuse reflective)				KES D71 2
	A: 150mm (Diffuse reflective Background suppression)				KES A71 2
KESB (Red Beam Type) 4-wire(DC)	F : 10m (Emitter + Receiver)	7 : NPN N/O + N/C	1:10-30 VDC	Standard 2 m Cable	KES BF71
	E: 3m (Retro diffuse)				KES BE71
	D : 800mm (Diffuse reflective)				KES BD71
	A: 150 mm (Diffuse reflective Background suppression)				KES BA71
	F : 10m (Emitter + Receiver)	7 : NPN N/O + N/C	1:10-30 VDC	2 : M8 pig tail connector	KES BF71 2
	E: 3m (Retro diffuse)				KES BE71 2
	D : 800mm (Diffuse reflective)				KES BD71 2
	A: 150 mm (Diffuse reflective Background suppression)				KES BA71 2

Photo Electric Sensor

KE Series
\qquad

Flush

M12 connector Flush

KES(B) Bracket

$\frac{11-48}{\text { KACON }}$

Technical Data

Photo Electric Sensor

Overview

What Are Photoelectric Sensors?
Photoelectric Sensors detect objects, changes in surface conditions, and other items through a variety of optical properties.A Photoelectric Sensor consists primarily of an Emitter for emitting light and a Receiver for receiving light. When emitted light is interrupted or reflected by the detectable object, it changes the amount of light that arrives at the Receiver. The Receiver detects this change and converts it to an electrical output. The light source for the majority of Photoelectric Sensors is infrared or visible light (generally red, or green/blue for identifying colors).

Photoelectric Sensors are classified as shown in the figure below
Through-beam Sensors

Retro reflectice Sensors

Diffuse reflectice Sensors

Operating Principles

1) Through-beam Sensors

- Stable operation
- Long sensing distances ranging(Max.20m) from several centimeters to several tens of meters.
- Sensing position unaffected by changes in the detectable object path.
- Operation not greatly affected by detectable object gloss, color, or inclination.

2) Diffuse reflective Sensors

It has wide sensing range but shorter sensing distance since light source is diffused after passing the lens.

Features

- Sensing distance ranging(Max.several meters).
- Easy mounting adjustment.
- The intensity of reflected light and operating stability vary with the conditions (e.g., color and smoothness) on the surface of the detectable object

3) Retro reflective Sensors

Retro reflective type uses mirrors (reflectors) with high light radiant in order to detect a target by comparing difference of light amount determined by the presence of target between the sensor and reflector.

BGS (Background Suppression)

The BGS function prevents any background object (i.e., the conveyor) beyond the set distance from being detected.
(1) Objects with extremely low reflectance and objects that are darker than black paper.
(2) Objects like mirrors that return virtually all light back to the Emitter.
(3) Uneven, glossy surfaces that reflect a lot of light but disperse the light in random directions.
Reflected light may return to the Receiver momentarily for item (3) due to detectable object movement. In that case, an OFF delay timer or some other means may need to be employed to prevent chattering.

Technical Data

Photo Electric Sensor

Usage Guidance

Model Selection

Checkpoints for Through-beam and Retro reflective Sensors

Detactable object

1. Size and shape
(vertical \times horizontal \times height)
2. Transparency (opaque, semi-
transparent, transparent)
3. Velocity \vee (m / s or units/min.)

Sensor

1. Sensing distance (L)
2. Restrictions on size and shape
a) Sensor
b) Retroreflector
(for Retro reflective Sensors)
3. Need for side-by-side mounting

a) No. of units
b) Mounting pitch
c) Need for staggered mounting
4. Mounting restrictions (angling, etc.)

Environment

1. Ambient temperature
2. Presence of splashing water, oil, or chemicals
3. Others

HOW TO INSTALL

Directional angle

The angle where operation as a Photoelectric Sensor is possible

Differential travel
The difference between the operating distance and the reset distance.

Response time
The delay time from when the light input turns ON/OFF until the control output operates or resets.
In general for Photoelectric Sensors, the operating time (Ton) \fallingdotseq reset time (Toff).

The ambient operating illumination is expressed in terms of the Receiver surface illuminance and is defined as the illuminance
when there is a $\pm 20 \%$ change with respect to the value at a light reception output of 200 lx .

Received illumination

Standard Detectable object

The standard detectable object for both Through-beam Sensors and Retroreflective Sensors is an opaque rod with a diameter larger than the length of a diagonal line of the optical system.
For Diffuse-reflective Sensors, the standard detectable object is a sheet of white paper larger than the diameter of the emitted beam.

Through-beam Sensors

Retro-reflectice Sensors

The length of the diagonal of the Reflector

Diffuse-reflectice Sensors

General Precautions

For precautions on individual products, refer to the Safety Precautions in individual product information.

WARNING

- These products cannot be used in safety devices for presses or other safety devices used to protect human life.
- These products are designed for use in applications for sensing workpiecs and workers that do not affect safety.

Precautions for Safe use

- To ensure safety, always observe the following precautions.

Safety Precautions

Be sure to abide by the following precautions for the safe operation of the Sensor.

Wiring Instruction

Power Supply Voltage

Do not use a voltage that exceeds the operating voltage range. Applying a voltage that is higher than the operating voltage range, or using an AC power supply (100 VAC or higher)for a Sensor that requires a DC power supply may cause explosion or burning.

Load short-circuiting

- Do not short-circuit the load. Explosion or burning may result.
- The load short-circuit protection function operates when the power supply is connected with the correct polarity and the power is within the rated voltage range.

Incorrect Wiring

Be sure that the power supply polarity and other wiring is correct. Incorrect wiring may cause explosion or burning.
DC 3/4-Wire NPN Output Sensors

Precaution for Safe use

Settings

Power Reset Time
The Sensor is ready to operate 100 ms after the Sensor is turned ON. If the load and Sensor are connected to independent power supplies respectively, be sure to turn ON the Sensor before turning the load ON.

Cable outlets

- Secure the connector cover by hand. Do not use any pliers, other-wise the connector may be damaged.
- The proper tightening torque range is between 0.3 and $0.4 \mathrm{~N} \cdot \mathrm{~m}$. Be sure to tighten the connector securely, otherwise the specified degree of protection may not be maintained or the connector may be disconnected due to vibration.

Mounting

Sensor Mounting
Use M3 screws to mount the sensor and tighten each screw to a maximum torque of $0.5 \mathrm{~N} \cdot \mathrm{~m}$.

Cables

Part of the cable is coated and may wrinkle when bent.
Observe the following precautions when handling the cable because it is made of the same polyvinyl chloride (PVC) material as the cables for standard Sensors.

- Do not subject the cable to mechanical movement in oily environments

The sheath will lose its elasticity and harden over time. The cable may break as a result and cause faulty operation, or there may be damage to the sheath that leads to a short circuit.

Distribution Box
 Metal Body
 KDM series

Part Number Description

* Standard specification is not appeared in part number description

General Specification

Model Output Type	KMD 1	KMD3	KMD7	KMD8
Number of Core	4 - Core		5 - Core	
Output Configration	1 : NPN N/O	3 : PNP N/O	7 : NPN N/O+N/C	8 : PNP N/O+N/C
Supply Voltage	Max. 125VAC/DC or 24VDC			
Power Indicator	GREEN LED			
Number of Sockets	8			
Number of Signals Per Sockets	2			
Status(Signal) Indicators	YELLOW LED			
Supply Current	Max. 4A per contact			
Combined Current	Pre-wired cable : Max. 12A, M23 Connector: Max. 10A			
Housing Material	Zinc-Nickel plated			
Protection Degree	IP67			
Temperature Range	$-20 \sim 80^{\circ} \mathrm{C}$			
Resistance	Good resistance against chemicals and oils. For corrosive media it should be individually specified according to the requirement.			

Product Selection

Model	Cable Outlet For Sensors/Actuators	Output Configration	Part Number

Accessories - Plug Connector

Straight field-attachable connector	Angled field-attachable connector	Straight pre-wired connector
KDMC1		
II $\mathbf{5 2}$	Industrial Controls Catalog	www.kacon.co.kr

I/O Connector

KQS, KQJ series

Part Number Description

SERIES (1) (2) (4)

SERIES	KQS KQA	Kacon I/O connector straight Kacon I/O connector angled	
(1) Led Indicator	Standard*: No Indicator	L: LED Indicator	
2	Connector Type	1: Male	$2:$ Female
3	Connector Size	$2:$ M8	$3:$ M12
4	Number of Pin/Core	$3: 3$ pin/core	$4: 4$ pin/core

* Standard specification is not appeared in part number description

Product Selection

Model	Indicator	Connector Type	Connector Size	Number of Pin	Part Number	Ambient Temperature	Rated Current/ Voltage
I/O Connector Straight - M8	Standard: No Indicator	1: Male	2 : M8	3:3Pin	KQS 123	$-25 \sim 85^{\circ} \mathrm{C}$	4A/250V
				4:4 Pin	KQS 124		
1/O Connector Straight - M8	Standard: No Indicator	2 : Female	2 : M8	3:3 core	KQS 223	$-25 \sim 85^{\circ} \mathrm{C}$	4A/250V
				4:4 core	KQS 224		
I/O Connector Straight - M12	Standard: No Indicator	1 : Male	3 : M12	3:3Pin	KQS 133	$-25 \sim 85^{\circ} \mathrm{C}$	4A/250V
				4:4 Pin	KQS 134		
				5:5 Pin	KQS 135		
	L : LED Indicator with transparent case			3:3 Pin	KQS L133	$-25 \sim 85^{\circ} \mathrm{C}$	4A/250V
				4:4 Pin	KQS L134		
				5:5 Pin	KQS L135		
I/O Connector Straight - M12	Standard: No Indicator	2 : Female	3 : M12	3:3 core	KQS 233	$-25 \sim 85^{\circ} \mathrm{C}$	4A/250V
				4:4 core	KQS 234		
				5:5 core	KQS 235		
	L : LED Indicator with transparent case			3:3 core	KQS L233	$-25 \sim 85^{\circ} \mathrm{C}$	4A/250V
				4:4 core	KQS L234		
				5:5 core	KQS L235		
Rev. 2/14 Data subject may change without notice.		www.kacon.co.kr			Industrial Controls Catalog		II-53

I/O Connector

KQS, KQJ series

Product Selection

| II - 54 | Industrial Controls Catalog | www.kacon.co.kr |
| :--- | :--- | :--- | | Rev. 2/14 |
| :--- |
| Data subject may change without notice. |

KACON
 Rotary ENCODER

General Incremental Encoders

Incremental encoder is widely automation field wherever it need to have control the motion. KRE series has got wide range of resolution up to 2500ppr and various size from $\varnothing 28$ to $\varnothing 50$ for most of general purpose motion applications.

KACON is strongly recommend to use KRE series When you think about cost and reliable performance.

Waterproof Incremental Encoders

KRW/KNM Incremental encoder is developed for outstanding performance in mechanical shockresistance and Waterproof. Also It is workable at 100 N radial roads to fit various industrial circumstance.

KRW/KNM incremental encoder will extend your application performance in tough environments conditions.

Special purpose Encoders (Under developments)

$\varnothing 25 \sim \not \subset \mathrm{OH}$

Stainless Housing

25bit Multi turn

The effort of innovation is never stop in KACON. And it will show you the most advanced encoder models such as 25 bit Multi turn encoders, large hollow shaft Encoders and Stainless housing encoders.

If you have any problem with you motion control, please concern KACON.
KACON will provide you right solution in time

KACON Rotary Encoder

Part Number Description

\section*{| SERIES | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |}

SERIES	$\begin{aligned} & \text { KR (IP54) } \\ & \text { KRW(IP65/IP67) } \end{aligned}$						
	Under	KNM	(IP69K Waterproof)				
	Development	KNP	(High Resolution)				
		KRS	(Stainless)				
		KRA	(Absolute)				
		KRH	(Large Hollow shaft)				
(1) Shape	Shaft	$\varnothing 28$	$\varnothing 38$	$\varnothing 40$	$\varnothing 50$	$\varnothing 58$	
	Hollow Shaft	$\varnothing 38$	$\varnothing 40$	$\varnothing 50$	$\varnothing 58$		
	Semi Hollow	$\varnothing 38$					
	Shaft						
(2) Shaft	$\varnothing 4$	$\varnothing 5$		$\varnothing 6$		$\varnothing 8$	$\varnothing 10$
	$\varnothing 12$	$\varnothing 13$		$\varnothing 14$		$\varnothing 15$	$\varnothing 16$
(3) Resolution	10~30,000						
(4) Output	Push-Pull (Totempole)						
	NPN Open Collector						
	Line Drive (RS422)						
(5) Power	5-30VDC	10-3	DC	5VDC	ne dr	utpu	

* Standard specification is not appeared in part number description

| II - 56 | Industrial Controls Catalog | www.kacon.co.kr |
| :--- | :--- | :--- | | Rev. 2/14 |
| :--- |
| Data subject may change without notice. |

Incremental ENCODER

KR Series

Stainless shaft

Waterproof rubber or cable locker for cable outlet

Reverse Cable outlet protection Short circuit protection

Part Number Description

Incremental ENCODER

KR Series

General Specification

Shape	$\varnothing 28$ Shaft	$\varnothing 38$ Shaft/Hollow Shaft	Ø50 Shaft/Hollow Shaft
Maximum Operating Speed	6000 rpm	6000 rpm	6000 rpm
Maximum Load Capacity	5N (axial), 10N (radial)	25N (axial), 50N (radial)	30N (axial), 60N (radial)
Shock Resistance	30G/11ms	50G/11ms	50G/11ms
Vibration Resistance	6G 10~2000HZ	10G $10 \sim 2000 \mathrm{HZ}$	10G $10 \sim 2000 \mathrm{HZ}$
Life Time (bearing)	10^{9} revolution	10^{9} revolution	10^{9} revolution
Starting Torque	$<0.01 \mathrm{Nm}$	$<0.01 \mathrm{Nm}$	$<0.01 \mathrm{Nm}$
Body Material	AL-alloy UNI9002-5	AL-alloy UNI9002-5	AL-alloy UNI9002-5
Housing Material	AL-alloy UNI9002-5	AL-alloy UNI9002-5	AL-alloy UNI9002-5
Ambient Temperature	$-20 \sim 80^{\circ} \mathrm{C}$ (with no icing)	$-20 \sim 80^{\circ} \mathrm{C}$ (with no icing)	$-20 \sim 80^{\circ} \mathrm{C}$ (with no icing)
Storage Temperrature	$-35 \sim 85^{\circ} \mathrm{C}$ (with no icing)	$-35 \sim 85^{\circ} \mathrm{C}$ (with no icing)	$-35 \sim 85^{\circ} \mathrm{C}$ (with no icing)
Cable Outlet	Axial 2m Cable	2m Cable (Radial / Axial)	2m Cable (Radial / Axial)
Weight	100 g	135 g	155g
Protection Degree	IP50	IP54	IP54

Characteristics

Output	Push-Pull (Totem pole)	NPN Open Collector	RS422(Line Drive)
Supply Voltage (VDC)	$5 \sim 30 \mathrm{VDC}$	$5 \sim 30 \mathrm{VDC}$	5 VDC
Power Consumption (no load)	125 mA	80 mA	80 mA
Maximum Load Current	$\pm 80 \mathrm{~mA}$	$\pm 50 \mathrm{~mA}$	$\pm 50 \mathrm{~mA}$
Pulse Frequency	Max. 300 kHz	Max. 300 kHz	Max. 300 kHz
Signal At High	Min. Ub-1.5V	Min. Ub- $70 \%{ }^{*}$	Min. Ub-3.4V
Signal At Low	Max. 0.8 V	Max. 0.4 V	Max. 0.4 V
Rise Timetr	Max. $1 \mu \mathrm{~s}$	Max. $1 \mu \mathrm{~s}^{* *}$	Max. 200ns
Fall Time Tf	Max. $1 \mu \mathrm{~s}$	Max. $1 \mu \mathrm{~s}^{* *}$	Max. 200ns

(*) High signal level of NPN Open collector is depends on the pull up resistor. $4.7 \mathrm{k} \Omega$ is recommended resistance.
${ }^{(* *)}$ Fall and Rise time of NPN Open collector is depends on pull up resistor and cable length.

| II - 58 | Industrial Controls Catalog | www.kacon.co.kr |
| :--- | :--- | :--- | | Rev. 2/14 |
| :--- |
| Data subject may change without notice. |

Terminal configuration

Signal	OV	+Ub	+A		+B		+Z		Shield
Color	White (WH)	Brown (BN)	Green(GN)		Gray (GY)		Blue (BU)		Sliver
RS422(Line Drive) output									
Signal	OV	+Ub	+A	-A	+B	-B	+Z	-Z	Shield
Color	White (WH)	Brown (BN)	Green(GN)	Yellow(YE)	Gray (GY)	Pink(PK)	Blue (BU)	Red (RD)	Sliver

Output Circuit

(3) Line-driver Output

Output Phase

Incremental ENCODER

KR Series

Product Selection

KR Ø28 Shaft KR Ø38 Shaft

KR Ø38 Hollow Shaft

KR Ø50 Shaft

KR Ø50 Hollow Shaft

Incremental ENCODER
 Waterproof Model
 KRW Series

Stainless shaft

Improved hosing for better shock resistance
(2 times higher than others)

Waterproof rubber or cable locker for cable outlet

Side pre-wired cabling design for saving space \& installation effort

Reverse Cable outlet protection Short circuit protection

Enhanced waterproof design

Part Number Description

SERIES 1	(2) 3 (4) 5	(6)-7
SERIES	KRW : IP65	KRWP : IP67
(1) Shape	$4: \varnothing 40$ Shaft	$5: \varnothing 50$ Shaft B \quad ¢ 40 Hollow Shaft \quad C $\varnothing 50$ Hollow Shaft
(2) Mounting Type	$\varnothing 40$ Shaft	Standard : $\varnothing 20$ Clamping flange wih synchro flange ditch
	$\varnothing 40$ Hollow Shaft	Standard : Double wing Bracket / P : Single wing Bracket / L : Long single wing bracket
	$\varnothing 50$ Shaft	Standard : $\varnothing 50.8$ Synchro flange /B: $\varnothing 58$ Sychro flange / C : $\varnothing 58$ Clamping flange
	$\varnothing 50$ Hollow Sahft	Standard : Double wing Bracket ($\varnothing 60 \mathrm{~mm}$) / L : Long single wing bracket / D : 63.5 Square flange
(3) Shaft Size	$\varnothing 40$ Shaft	$6: \varnothing 6$
	$\varnothing 40$ Hollow Shaft	$8: \varnothing 8, \quad 6: \varnothing 6$
	$\varnothing 50$ Shaft	$8: \varnothing 8, \quad 6: \varnothing 6(10 \mathrm{~mm}), \quad 6 \mathrm{~L}: \varnothing 6(15 \mathrm{~mm}), \quad 10: \varnothing 10(20 \mathrm{~mm}), \quad 12: \varnothing 12(20 \mathrm{~mm})$
	$\varnothing 50$ Hollow Sahft	$8: \varnothing 8, \quad 6: \varnothing 6, \quad 10: \varnothing 10, \quad 12: \varnothing 12, \quad 14: \varnothing 14, \quad 15: \varnothing 15$
(4) Output	1 : Push-Pull	2 : NPN Open Collector ($\varnothing 50$ only) 3 : Line Drive (RS422)
(5) Power	1:10~30VDC	2 : 5VDC (Line drive output only)
6 Cable Outlet	Standard : 2m Cable	1:M12 5pin 2:M12 8pin 3:M23 12pin
(7) Resolution	10, 20, 30, 40, 50, 60,	, 80, 90, 100, 200, 300, 360, 400, 500, 512, 600, 800,

| II - 62 | Industrial Controls Catalog | www.kacon.co.kr |
| :--- | :--- | :--- | | Rev. 2/14 |
| :--- |
| Data subject may change without notice. |

General Specification

Shape	Ø40 Shaft/Hollow Shaft	Ø50 Shaft/Hollow Shaft
Maximum Operating Speed	6000rpm	IP65 12000 rpm
		IP67 6000 rpm
Maximum Load Capacity	60N (axial), 100N (radial)	40N (axial), 80N (radial)
Shock Resistance	50G / 11ms	50G / 11ms
Vibration Resistance	10G $10 \sim 2000 \mathrm{HZ}$	10G $10 \sim 2000 H Z$
Life Time (Bearing)	10^{9} revolution	10^{9} revolution
Starting Torque	< 0.08 Nm	IP65 < 0.01 Nm
		IP67 < 0.05 Nm
Body Material	AL-alloy UNI9002-5	AL-alloy UNI9002-5
Housing Material	Zn-alloy	AL-alloy UNI9002-5
Ambient Temperature	$-20 \sim 85^{\circ} \mathrm{C}$ (with no icing)	$-40 \sim 85^{\circ} \mathrm{C}$ (with no icing)
Storage Temperature	$-25 \sim 100^{\circ} \mathrm{C}$ (with no icing)	$-45 \sim 90^{\circ} \mathrm{C}$ (with no icing)
Weight	110 g	400g
Protection Degree	IP65	IP65 / IP67

Characteristics

Output	Push-Pull (Totem pole)	NPN Open Collector	RS422(Line Drive)
Supply Voltage (VDC)	$10 \sim 30 \mathrm{VDC}$	$10 \sim 30 \mathrm{VDC}$	5 VDC
Power Consumption (no load)	125 mA	80 mA	80 mA
Maximum Load Current	$\pm 80 \mathrm{~mA}$	$\pm 50 \mathrm{~mA}$	$\pm 50 \mathrm{~mA}$
Pulse Frequency	Max. 300 kHz	Max. 300 kHz	Max. 300 kHz
Signal At High	Min. Ub -1.5 V	Min. Ub $-70 \% *$	Min. Ub -3.4 V
Signal At Low	Max. 0.8 V	Max. 0.4 V	Max. 0.4 V
Rise Timetr	Max. $1 \mu \mathrm{~s}$	Max. $1 \mu \mathrm{~s}^{* *}$	Max. 200 ns
Fall Time Tf	Max. $1 \mu \mathrm{~s}$	Max. $1 \mu \mathrm{~s}^{* *}$	Max. 200ns

(*) High signal level of NPN Open collector is depends on the pull up resistor. $4.7 \mathrm{k} \Omega$ is recommended resistance.
$\left(^{* *}\right)$ Fall and Rise time of NPN Open collector is depends on pull up resistor and cable length.

Incremental ENCODER
 Waterproof Model
 KRW Series

Terminal configuration

Push-Pull / NPN Open Collector Output

Signal	OV	+Ub	+A		+B		+Z	
Color	White (WH)	Brown (BN)	Green(GN)		Gray (GY)		Blue (BU)	
Pin code(5-pin)	1	2	3		4		5	Sliver

Signal	OV	+Ub	+A	-A	+B	-B	+Z	-Z	Shield
Color	White (WH)	Brown (BN)	Green(GN)	Yellow(YE)	Gray (GY)	Pink(PK)	Blue (BU)	Red (RD)	Sliver
Pin code (8-pin)	1	2	3	4	5	6	7	8	
Pin code (12-pin)	10	12	5	6	8	1	3	4	

Top view of pin plug

Connector type	M12 connector 5pin	M12 connector 8pin	M23 connector 12pin
Pin plug			

Output Circuit

(2) NPN Open Collector Output

Output Phase

(3) Line-driver Output

Output Phase

| II - 64 | Industrial Controls Catalog | www.kacon.co.kr |
| :--- | :--- | :--- | | Rev. 2/14 |
| :--- |
| Data subject may change without notice. |

Detection

Product Selection

Shape	Mounting	Shaft	Output	Power	Cable	Resolution (P / R)	Part Number
4 : $\varnothing 40$ Shaft	Standard: Ø20 Clamping flange	$6: \varnothing 6$	1 : Push-Pull	1:10-30VDC	Standard : 2m Cable	100 200	KRW 4611-100 KRW 4611-200
						300	KRW 4611-300
						360	KRW 4611-360
						500	KRW 4611-500
						512	KRW 4611-512
						600	KRW 4611-600
						1000	KRW 4611-1000
						1024	KRW 4611-1024
B : Ø40 Hollow Shaft	Standard: Double wing bracket	$8: \varnothing 8$	1 : Push-Pull	1:10-30VDC	Standard : 2m Cable	100	KRW B811-100
						200	KRW B811-200
						300	KRW B811-300
						360	KRW B811-360
						500	KRW B811-500
						512	KRW B811-512
						600	KRW B811-600
						1000	KRW B811-1000
						1024	KRW B811-1024
$5: \varnothing 50$ Shaft	Standard: $\varnothing 50.8$ Synchro flange	$8: \varnothing 8$	1 : Push-Pull	1:10-30VDC	Standard : 2 m Cable	100 200	KRW 5811-100 KRW 5811-200
						300	KRW 5811-300
						360	KRW 5811-360
						500	KRW 5811-500
						512	KRW 5811-512
						600	KRW 5811-600
						1000	KRW 5811-1000
						1024	KRW 5811-1024
C : $\varnothing 50$ Hollow Shaft	Standard: Double wing bracket (660 mm)	$8: \varnothing 8$	1 : Push-Pull	1:10-30VDC	Standard: 2m Cable	100 200	KRW C811-100 KRW C811-200
						300	KRW C811-300
						360	KRW C811-360
						500	KRW C811-500
						512	KRW C811-512
						600	KRW C811-600
						1000	KRW C811-1000
						1024	KRW C811-1024

Incremental ENCODER
 Waterproof Model

KRW Series

KRW Ø40 Hollow Shaft

Double wing bracket

Single wing bracket

Long single wing bracket

KRW Ø50 Hollow Shaft

Double wing bracket (Ø60mm)

Double wing bracket (毋60mm)

Long single wing bracket

Metal coupling for Encoders

KP Series

Part Number Description

KP	(1)			
Model		KP: Ø25 Alluminum metal coupling		
(1) Shaft Size	5	6	8	10
General Specification				
Twisting Moment	$1.8 \mathrm{N.m}$			
Maximum Speed	8000 rpm			
Screw	M:M4			
Material	Al-alloy			

Product Selection

| | Shaft hole size | | |
| :--- | :---: | :---: | :---: | :---: |
| Model | $\varnothing \mathrm{d} 1$ | $\varnothing \mathrm{~d} 2$ | Part number |
| KP | 5 | 5 | KP55 |
| | | 6 | KP56 |
| | | 8 | KP58 |
| | | 10 | KP510 |
| | | 6 | KP66 |
| | | 5 | KP65 |
| | | 8 | KP68 |
| | | 10 | KP610 |
| | | 5 | KP85 |
| | | 6 | KP86 |
| | | 10 | KP810 |

Dimension

D: Ø25
L: 25
L1: 3.55

| II - 68 | Industrial Controls Catalog | www.kacon.co.kr |
| :--- | :--- | :--- | | Rev. 2/14 |
| :--- |
| Data subject may change without notice. |

Technical Data

KACON Rotary Encoder Series

General

Encoders are sensors that generate digital signals in response to movement. Both shaft encoders, which respond to rotation, and linear encoders, which respond to motion in a line, are available. When used in conjunction with mechanical conversion devices, such as rack-and-pinions, measuring wheels, or spindles, shaft encoders can also be used to measure linear movement, speed, and position.

Encoders are available with a choice of outputs. Incremental encoders generate a series of pulses as they move. These pulses can be used to measure speed, or be fed to a counter to keep track of position. Absolute encoders generate multibit digital words that indicate actual position directly.

Encoders can be used in a wide variety of applications. They act as feedback transducers for motor-speed control, as sensors for measuring, cutting and positioning, and as input for speed and rate controls. Some examples are listed below

- Door control devices
- Robotics
- Lens grinding machines
- Plotters
- Testing machines
- Ultrasonic welding
- Converting machinery
- Assembly machines
- Labeling machines
- x / y indication
- Analysis devices
- Drilling machines
- Mixing machines
- Medical equipment

Operating Principle

Encoders can use either optical or magnetic sensing technology. Optical sensing provides high resolutions, high operating speeds, and reliable, long life operation in most industrial environments. Magnetic sensing, often used in such rugged applications as steel and paper mills, provides good resolution, high operating speeds, and maximum resistance to dust, moisture, and thermal and mechanical shock.

Optical Encoders

Optical encoders use a glass disk with a pattern of lines deposited on it, a metal or plastic disk with slots (in a rotary encoder), or a glass or metal strip (in a linear encoder). Light from an LED shines through the disk or strip onto one or more photodetectors, which produce the encoder's output. An incremental encoder has one or more of these tracks, while an absolute encoder has as many tracks as it has output bits.

Incremental Disk

Absolute Disk

Linear Scale

Magnetic Encoders

Magnetic sensing technology is very resistant to dust, grease, moisture, and other contaminants common in industrial environments, and to shock and vibration. There are several types of magnetic sensors.

Variable reluctance sensors detect changes in the magnetic field caused by the presence or movement of a ferromagnetic object. The simplest variablereluctance rotary sensor, often called a magnetic pickup, consists of a coil wound around a permanent magnet. This generates a voltage pulse when a gear tooth moves past it. Rugged, reliable, and inexpensive, this sensor is used mostly to measure speed, as it does not work unless the target is moving past the sensor face at about 180 inches per second or faster.

Another type of sensor uses a permanent magnet and a Hall effect or magnetoresistive device to produce a change in either voltage or electrical resistance in the presence of ferromagnetic material, which can be in the form of a gear tooth (in a rotary encoder) or a metal band with slots (in a linear encoder). This type of sensor will work down to zero speed, and is available in both rotary and linear forms.

Another type of magnetic sensor uses a magnetoresistive device to detect the presence or absence of magnetized "stripes", either on the rim of a drum or on a nonmagnetic strip.

Inductive Principle

Technical Data

KACON Rotary Encoder Series

Absolute vs. Incremental Coding

Incremental Coding

Incremental encoders provide a specific number of equally spaced pulses per revolution (PPR) or per inch or millimeter of linear motion. A single channel output is used for applications where sensing the direction of movement is not important. Where direction sensing is required, quadrature output is used, with two channels 90 electrical degrees out of phase; circuitry determines direction of movement based on the phase relationship between them. This is useful for processes that can reverse, or must maintain net position when standing still or mechanically oscillating. For example, machine vibration while stopped could cause a unidirectional encoder to produce a stream of pulses that would be erroneously counted as motion. The controller would not be fooled when quadrature counting is used.

When more resolution is needed, it's possible for the counter to count the leading and trailing edges of the pulse train from one channel, which doubles $(\times 2)$ the number of pulses counted for one rotation or inch of motion. Counting both leading and trailing edges of both channels will give $4 \times$ resolution.

An incremental encoder's output indicates motion. To determine position, its pulses must be accumulated by a counter. The count is subject to loss during a power interruption or corruption by electrical transients. When starting up, the equipment must be driven to a reference or home position to initialize the position counters.

Some incremental encoders also produce another signal known as the "marker," "index," or "Z channel." This signal, produced once per revolution of a shaft encoder or at precisely-known points on a linear scale, is often used to locate a specific position, especially during a homing sequence.

Absolute Coding

An absolute encoder generates digital words that represent the encoder's actual position, as well as its speed and direction of motion. If power is lost, its output will be correct whenever power is restored. It is not necessary to move to a reference position as with incremental type encoders. Electrical transients can only produce transient data errors, usually too brief to effect the dynamics of a control system.

An absolute encoder's resolution is defined as the number of bits in its output word. This output can be in straight binary or in gray code, which produces only a singlebit change at each step to reduce errors.

The difference between incremental and absolute encoders is analogous to the difference between a stop watch and a clock.
A stop watch measures the incremental time that elapses between its start and stop, much as an incremental encoder will provide a known number of pulses relative to an amount of movement. If you knew the actual time when you started the watch, you can tell what time it is later by adding the elapsed time value from the stop watch. For position control, adding incremental pulses to a known starting position will measure the current position. When an absolute encoder is used, the actual position will constantly be transmitted, just as a clock will tell you the current time.

Single vs. Multi-Turn

In a single-turn encoder, the output codes are repeated for every revolution of the encoder's shaft. There is no data provided to indicate if the encoder had made one revolution-or 1000 revolutions. With multi-turn absolute encoders, the output is unique for each shaft position, through every rotation, up to 4096 revolutions.

Resolution and Accuracy

Resolution is the number of measuring segments or units in one revolution of an encoder shaft or one inch or mm of a linear scale. Shaft encoders are available with resolutions up to 10,000 pulses per revolution (PPR) directly, and 40,000 PPR by edge-Detection of the A and B channels, while linear encoders are available with resolutions measured in microns. The bottom line is, the selected encoder must have resolution equal to or better than that required by the application. But resolution is not the whole story.

Accuracy and resolution are different, and it is possible to have one without the other. This figure shows a distance X divided into 24 increments or "bits." If X represents 360° of shaft rotation, then one revolution has been resolved into 24 parts.

While there are 24 bits of resolution, the 24 parts are not uniform. This transducer could not be used to measure position, velocity or acceleration with any accuracy.

On the other hand, in this figure the distance X is divided into 24 equal parts. Each increment represents exactly $1 / 24$ of a revolution. This transducer operates with accuracy as well as resolution. Accuracy, however, can be independent of resolution. A transducer may have a resolution of only two parts per revolution, yet its accuracy could be ± 6 arc seconds.
II-70 Industrial Controls

System Effects on Accuracy and Repeatability

System Accuracy : An encoder's performance is typically stated as resolution, rather than accuracy of measurement. The encoder may be able to resolve movement into precise bits very accurately, but the accuracy of each bit is limited by the quality of the machine motion being monitored. For example, if there are deflections of machine elements under load, or if there is a drive screw with 0.1 inch of play, using a 1000 count-per-turn encoder with an output reading to 0.001 inch will not improve the 0.1 inch tolerance on the measurement. The encoder only reports position; it cannot improve on the basic accuracy of the shaft motion from which the position is sensed.

Note : Given a particular machine design, some errors in measuring motion such as mechanical backlash and errors in leadscrews or gearing systems, can be electronically compensated by some of the more advanced motion controllers.

System Repeatability : Repeatability is the tolerance to which the controlled machine element can be repeatedly positioned to the same point in its travel. Repeatability is generally less than system resolution, but somewhat better than system accuracy. 10,000 pulses per turn can be generated from a 2500 cycle, twochannel encoder. Typically with a Dynapar encoder, this $4 \times$ signal will be accurate to better than ± 1 count.

Encoder Communications

The output of an incremental encoder is a stream of pulses on one or two channels, while the output of an absolute encoder is a multi-bit word. This can be transmitted in either parallel or serial form.

Parallel Output

Parallel output makes all output bits available simultaneously. It may be provided as straight binary or transformed into gray code. Gray code produces only a single-bit change at each step, which can reduce errors. The table on page 6 shows an example of conversion between straight binary and gray code.

Some parallel-output encoders also can accept inputs from the outside-output latching commands, for example, and direction sense setting. The advantage of parallel output is that it's fast : all the data is available in real time, all the time. Disadvantages include bulky (and expensive) cables and limited cable length. Most encoders come with cables a meter or two long, but a parallel output using differential output and Flushcabling can be extended to 100 m using a thicker cable, at a reduction in speed. Open-collector (sinking or sourcing) outputs can go roughly a third that far.

Serial Output

The alternative to parallel output is to encode it and send it in serial form. There are several dedicated serial buses available, as well as standard industrial buses. Tradeoffs among these include bandwidth, update rate, hardware requirements, wire count, proprietary vs nonproprietary nature, and availability. The table below summarizes the major differences.

Decimal	Gray Code	Binary	Decimal	Gray Code	Binary
0	0000	0000	8	1100	1000
1	0001	0001	9	1101	1001
2	0011	0010	10	1111	1010
3	0010	0011	11	1110	1011
4	0110	0100	12	1010	1100
5	0111	0101	13	1011	1101
6	0101	0110	14	1001	1110
7	0100	0111	15	1000	1111

Dedicated Serial Interfaces				
	HIPERFACE'	$\begin{aligned} & \text { SSI + Sine / } \\ & \text { Cos } \end{aligned}$	EnDat ${ }^{\prime}$	BiSS
Open Protocol	No	No (License available)	No	Yes
Cable outlet	RS-485: Bus or Point-to-Point Analog: Point-to-Point	Point-to-Point	Point-to-Point	Bus or Point-to-Point
Analog Signals Required	Yes	Yes	No	No
Transmission Mode (Digital)	Bidirectional, asynchronous	Unidirectional, synchronous	Bidirectional, synchronous	Bidirectional, synchronous
Digital Data Transmission Rate	38.4 kBaud	1.5 MHz	4 MHz	10 MHz
Cable Length Compensation	No	No	Yes	Yes
Protocol Length Adjustable	No	No	Yes	Yes
No. of Wires	8	6-8	6 to 12	6
Hardware Compatible				\longrightarrow
Alarm/Warning Bit	No	Definable	Yes	Definable

Technical Data

KACON Rotary Encoder Series

SSI ${ }^{\text {(Synchronous Serial Interface) }}$

Synchronous Serial Interface is an all-digital point-to-point interface popular in Europe. It provides unidirectional communication at speeds up to 1.5 MHz and uses a four-wire cable (plus two wires for power).

Some encoders also provide a 1 V p-p sin/cos output for real-time control, since the on-demand absolute encoder data can come in too slowly for many control loops.

Cable Length	Data Rate
50 m	400 kHz
100 m	300 kHz
200 m	200 kHz
400 m	100 kHz

Data rate depends on both resolution and
cable length, as shown.

EnDat

EnDat (Encoder Data) is a proprietary protocol developed by Heidenhain. Like SSI, it is synchronous, with clock signals fed to the encoder by the controller. EnDat can carry more information than SSI, because it provides for internal memory in the encoder that can be read and written to by the controller. This data can include encoder diagnostics, identification, and alarm status. In addition, the controller can set the encoder's zero reference point, which aids in equipment setup. As with SSI, EnDat encoders transmit absolute position data on demand. Depending on version EnDat can include an analog 1 V p-p sin/cos output that electronics in the controller interpolate to derive incremental data for real-time control. EnDat uses a six- to twelve-conductor cable up to 150 m long,

HIPERFACE

HIPERFACE is a proprietary protocol developed by Max Stegmann GmbH. It uses an eight-wire cable (two for data, two for power and four for 1Vp-p sin/cos) and has two channels: One carries $1 \mathrm{~V} p-\mathrm{p} \sin / \mathrm{cos}$ incremental data, while the other is a bidirectional RS-485 link. Absolute position data is transmitted via the RS-485 link at power-up, and the system is incremental after that.

HIPERFACE can access the encoder's memory area for manufacturer's data, status, alarm information, and so on. In addition, the controller can write to certain memory areas, and can set the absolute zero position.

BiSS

BiSS (Bidirectional Synchronous Serial interface), is an open protocol and is the newest of the encoder interfaces. It takes a somewhat different path : BiSS sends full absolute position data whenever the controller polls the encoder, rather than just at startup. It allows easy recovery from momentary data dropouts during operation. Since it is an all-digital system, it eliminates the cost of A / D converters needed in drive systems that connect to encoders using some proprietary protocols. It is hardware-compatible with SSI, requiring only software changes.

BiSS uses four data lines, one pair carrying data from the encoder and one carrying clock data to it, plus two power conductors.

BiSS can address internal registers in the encoder that can be read by and written to by the master with data about the encoder itself (identification, device data, resolution, etc.). It can also carry other digital data (temperature, acceleration, etc.) and transmit it to the master on demand, without interfering with real-time operation.

BiSS, like HIPERFACE, can be connected either point-to-point or via a bus

Industrial Bus Interfaces

Three general-purpose industrial buses are commonly used with encoders.

DeviceNet ${ }^{\text {TM }}$

Based on the Controller Area Network (CAN), this system's basic trunklinedropline topology provides separate twisted-pair wires for both signal and power distribution, enabling 24 VDC devices to be powered directly from the bus. End-toend network distance varies with data rate and cable size.

Profibus

This open communication standard developed by the European Community (European Common Standard EC50170), comes in two variations: FMS, which is used for upper level cell-to-cell communication, and Profibus DP, which is optimized for data transfer with local field devices like valves, drives and encoders. There are specific device profiles defined, including one for encoders. DP is good for applications that require high speed transmission of fairly large amounts of information (512 bits of input data and 512 bits of output data over 32 nodes in 1 ms).

Interbus

Designed by Phoenix Contact in the mid '80s, Interbus is the longest-standing open industrial network. A true token ring topology, Interbus is actually divided into two buses. The remote bus is an RS-485 transmission medium with length capabilities up to 13 km . The local or peripheral bus enables Cable outlet of up to eight devices within a 10 m range.

Bus Network Comparison			
	DeviceNet	Profibus	Interbus
Topology	Linear (trunkline/dropline)	Linear (trunkline/dropline)	Closed Loop
Communication System	Master/Slave	Multimaster (Producer/ Consumer)	Master/Slave
Data Exchange	Polled, Change of State, Cyclic	Polled	Polled
Max. Length	500 m	$\begin{aligned} & 1200 \mathrm{~m}(\mathrm{w} / \\ & \text { repeaters) } \end{aligned}$	13 km
Max. Nodes	64	126	512
Data Packet	0-8 bytes	244 bytes	Flexible
Transmission Speed	125 Kbps @ 500 m 250 Kbps @ 250 m 500 Kbps @ 100 m	$9.6 \text { Kbps }$ $\text { to } 12 \mathrm{Mbps}$	500 Kbps
Transmission Media	2-wire twisted pair with 2-wire bus power cable w/drain wire	2-wire twisted pair w/shield	Local : 3-pair twisted w/drain Remote : 5-pair twisted w/drain

Applications

Linear/Straight-Line Measuring with Shaft Encoders

Through mechanical means, usually racks and pinions or leadscrews, rotary encoders can measure straight-line or linear motion. Calibrating the number of pulses per unit of measure involves selecting the proper transducer and may include a separate calibration step.

Measuring Length with Leadscrews

The relationship between resolution, lead screw pitch, and PPR is shown below.

$$
\begin{aligned}
& \text { Resolution }=\frac{\text { Lead }}{\mathrm{PPR}}=\frac{1}{\mathrm{PPR} \times \text { Pitch }} \\
& \mathrm{PPR}=\frac{\text { Lead }}{\text { Resolution }}=\frac{1}{\text { Resolution } \times \text { Pitch }}
\end{aligned}
$$

The table below shows some examples. Note that the PPR of an encoder can be doubled or quadrupled by counting the rising and falling edges of one or both output channels, so a 1000 PPR encoder with a $4 \times$ multiplication will act like a 4000 PPR encoder.

Encoder PPRs and Servo Resolutions for Typical Leadscrew Applications

Servo Resolution	Encoder PPR and Logic Multiplier		
	$0.5-\mathrm{in}$. Lead $(2$ pitch)	$0.25-\mathrm{in}$. Lead $(4$ pitch)	0.2 -in. Lead $(5$ pitch)
0.0001 in.	1250×4	625×4	500×4
0.00005 in.	2500×4	1250×4	1000×4
0.0005 in.	250×4	250×2	200×2
0.00025 in.	500×4	250×4	200×4
0.0002 in.	625×4	625×2	500×2
0.001 mm	3175×4 (special)	3175×2	1270×4
0.002 mm	3175×2	3175×1	635×4
0.01 mm	635×2	635×1	508×1
0.005 mm	635×4	635×2	508×2

Examples:

1. An incremental encoder is required on a milling machine to provide a digital readout display. The display must read directly in ten thousandths of an inch. The travel is regulated by a 10 -pitch precision leadscrew, which moves the bed $1 / 10$ th inch for every revolution of the leadscrew. Using the formulas,

$$
\mathrm{PPR}=\frac{1}{\text { Resolution } \times \text { Pitch }}=\frac{1}{0.0001 \times 10}
$$

Alternatively,

$$
\text { PPR }=\frac{\text { Lead }}{\text { Resolution }}=\frac{0.1}{0.0001}=1000
$$

So the encoder must have 1000 PPR, whichever way we calculate it. If we like, we could also use a 500 PPR encoder with a $2 \times$ logic multiplier.
2. To measure 10 inches of travel to 0.01 inch resolution : Total count = 1000; Resolution $=0.01$ inch. If the encoder makes one full turn over the total travel, a 1000 PPR encoder can satisfy this requirement. At full travel, the encoder and counter will read 9.99 , which is within the stated tolerance of 0.01 inch.

Measuring Length with Wheels and Rolls

An encoder can also measure linear distance using a measuring wheel or roll. The table below gives the calibration constant, K, that must be set on the counter or tach readout in order to give the display resolution desired.

Length	Application	
Display Resolution	Type 1 Measuring Wheel	Type 2 Measuring Roll
1 Foot	$K=\frac{C}{12 N}$	$K=\frac{0.2618 \mathrm{D}}{\mathrm{GN}}$
1 Inch	$K=\frac{C}{N}$	$K=\frac{3.1416 \mathrm{D}}{\mathrm{GN}}$
0.1 Inch	$K=\frac{10 C}{N}$	$\mathrm{K}=\frac{31.416 \mathrm{D}}{\mathrm{GN}}$
0.01 Inch	$K=\frac{100 C}{N}$	$\mathrm{K}=\frac{314.6 \mathrm{D}}{\mathrm{GN}}$
1 Meter	$K=\frac{M}{N}$	$\mathrm{K}=\frac{0.079796 \mathrm{D}}{\mathrm{GN}}$
1 Decimeter	$K=\frac{10 M}{N}$	$\mathrm{K}=\frac{0.797966 \mathrm{D}}{\mathrm{GN}}$
1 Centimeter	$K=\frac{100 M}{N}$	$\mathrm{K}=\frac{7.97966 \mathrm{D}}{\mathrm{GN}}$
1 Millimeter	$K=\frac{1000 M}{N}$	$K=\frac{79.796 \mathrm{D}}{\mathrm{GN}}$
0.1 Millimeter	$K=\frac{10,000 M}{N}$	$\mathrm{K}=\frac{797.966 \mathrm{D}}{\mathrm{GN}}$

Examples:

In a Type 2 application we wish to display feet to the nearest 1 foot.
From the table above :

$$
\mathrm{K}=\frac{0.2618 \mathrm{D}}{\mathrm{GN}}
$$

If $G=2.6, N=1, \quad D=9.15$,

$$
K=\frac{0.2618 \times 9.15}{2.6 \times 1}=0.92133
$$

Technical Data

KACON Rotary Encoder Series

Ratio Calibration

In some cases, the desired display is the ratio of two inputs, A and B . This table shows how to calculate the calibration factor, K, for the A and B inputs to the counter to give the desired display resolution.

WHERE : G = Gear Ratio (increases rpm of encoder in relation to rpm of roll)
$N=$ Encoder pulses per revolution
D = Roll diameter in inches
C = Measuring wheel circumference in inches

Ratio	Application	
Display Resolution	Type 1	Type 2
.001	$\mathrm{~K}=\frac{5 \mathrm{C}}{\mathrm{N}}$	$\mathrm{K}=\frac{15.708 \mathrm{D}}{\mathrm{GN}}$
.0001	$\mathrm{~K}=\frac{50 \mathrm{C}}{\mathrm{N}}$	$\mathrm{K}=\frac{157.08 \mathrm{D}}{\mathrm{GN}}$

Examples:
Assume that both inputs are Type 2 and you want a 0.001-in. display resolution.

Input A	Input B
$K=15.708 \mathrm{D}$	K $=15.708 \mathrm{D}$
GN	GN
$\mathrm{K}=17.0 \mathrm{in}$	$\mathrm{K}=19.2 \mathrm{in}$
$\mathrm{N}=12$	$\mathrm{N}=12$
$\mathrm{G}=3.5$	$\mathrm{G}=2.8$

Then:

$$
\begin{aligned}
\mathrm{K}_{\mathrm{A}} & =\frac{15.708 \times 17.0}{12 \times 3.5} & \mathrm{~K}_{\mathrm{B}} & =\frac{15.708 \times 19.2}{12 \times 2.8} \\
& =6.3580 & & =8.9760
\end{aligned}
$$

Establishing Reference Position

Reference Pulse

An incremental encoder's reference pulse (sometimes called a Marker or Index Pulse) occurs at a precisely-known point in a 360° revolution of a shaft encoder or along a linear scale. A unique position can be identified by using the reference- pulse output only, or by logically relating the reference pulse to the A and B data channels. Thus it is most frequently used in positioning and motion control applications as an electronic starting point of known position from which counting or position tracking begins.

In long travel or multiple turns of the encoder, the reference pulse is sometimes used by the control to initiate an electronic check on the total count received from the encoder. For example, each time a reference pulse is received by the control, the total count received from channels A and B should be an even multiple of the encoder's pulses per revolution

Ballscrew Position Table Example

In motion control encoder applications, a PLC, CNC, or motion controller will usually command a sequence of moves with each axis of a positioning system to bring the table to the same starting position before beginning a task. The following is a typical automatic referencing and backlash compensation sequence for establishing a home position through the use of an encoder marker pulse.

1. If the Home Switch is open (indicating a position on the positive side of home) when the command is received, the axis is accelerated in the negative direction at the JOG ACCELERATION rate and moved at the FAST JOG VELOCITY until the Home Switch closes.

Note that a mechanical home-position limit switch is usually not repeatably accurate enough for this application. The encoder reference or proximity sensor has much greater repeat accuracy and is therefore a better reference point to establish a starting point for subsequent measurements. The home limit switch is used to signal the control that the next marker pulse signal received is "Home" in multi-turn encoder applications.
2. The axis is stopped at the JOG ACCELERATION rate.
3. The axis is accelerated in the positive direction at the JOG ACCELERATION rate and moved at the FAST JOG VELOCITY until the Home Switch opens.
4. The axis is accelerated in the negative direction at the JOG ACCELERATION rate and moved at the SLOW JOG VELOCITY until the Home Switch closes and an encoder marker pulse is sensed by the control (in that order).
5. The axis is stopped at the JOG ACCELERATION rate.

Transducer Operating Speed

All transducers have inherent mechanical and electronic speed limitations, and exceeding them may result in incorrect data or premature failure. The maximum operating speed for a given application will be the maximum electronic operating speed of the encoder and the electronics to which it is connected, or the encoder's maximum mechanical RPM specification, whichever is less.

| II - 74 | Industrial Controls Catalog | www.kacon.co.kr |
| :--- | :--- | :--- | | Rev. 2/14 |
| :--- |
| Data subject may change without notice. |

Mechanical Installation

Encoders are available in (below, I to r) shaft, hub shaft, and hollow shaft configurations.

The method of coupling the encoder to the machine is important because of possible errors or stresses which can be introduced. Take care not to exceed the rated shaft loading, both radial and axial.

Common causes of difficulty are end thrust, misalignment, and belt or gear thrust. Backlash or modulation in the coupling can cause errors in position indication. The smallest misalignment can result in high radial loads, which lead to premature bearing failure. To prevent this, use a flexible coupling that compensates for the misalignment between the shaft of the encoder and the machine. Generally, the greater the misalignment, the quicker the coupling will fail. When selecting the coupling determine how long it will last under operating misalignment, and the effect of this misalignment on shafts and bearings. This will yield better results than just choosing a coupling solely on the basis of how much misalignment it will take. A coupling will last indefinitely if there is no misalignment.

Encoders usually require a precision instrument coupling to prevent errors caused by backlash and to prevent damage to shaft and bearings. Specifically, do not use fingered motor couplings with rubber spacers.

Timing Belts

Use Series XL timing belts. Reliable long-life encoder performance is achievable provided the belt is installed in accordance with the manufacturer's instructions.

Belt Tension : The belt's positive grip eliminates the need for high initial tension. A properly tensioned belt will last longer, cause less wear on encoder bearings, and operate more quietly.

General Precautions

For precautions on individual products, refer to the Safety Precautions in individual product information.

\triangle WARNING

- These products cannot be used in safety devices for presses or other safety devices used to protect human life.
- These products are designed for use in applications for sensing workpiecs and workers that do not affect safety.

Precautions for Safe use

- To ensure safety, always observe the following precautions.

Precaution for Safe use

The Rotary Encoder consists of high-precision components. Dropping the Encoder may damage it. Exercise sufficient caution when handling the Encoder. Do not allow water or oil to splash on the Encoder. When connecting with a chain timing belt and gears, hold the shaft with a bearing and use a coupling to join to the Encoder.

When using a coupling, do not exceed the following permitted values.
Make sure that an excessive load is not placed on the shaft when the gears engage.

When inserting the coupling into the shaft, do not tap it with a hammer or apply any other type of shock.
When attaching or detaching the coupling, do not bend, compress, or pull excessively on the coupling.
If connecting the cable after securing the Encoder, do not pull on the cable. Also do not apply shock to the Encoder or shaft.

When extending the cable, check the cable type and response frequency. Wire resistance and capacitance between wires may amplify residual voltage and cause waveform distortions.
If the cable is extended, it is recommended to use a line-driver output. Regardless of the output type, only lengths of 30 m or less. To avoid inductive noise, keep the cabling as short as possible (particularly when inputting to an IC).

When the cable length is extended, the output waveform startup time is lengthened and it affects the phase difference characteristics of phases A and B.

Extending the cable length not only changes the startup time, but also increases the output residual voltage.

Technical Data

KACON Rotary Encoder Series

Preventing Counting Errors

Spurious pulses due to vibration may cause counting errors if the shaft is stationary near the rise or fall of the signal.
Using an up/down counter can prevent the counting of error pulses.

Extending the Cable When Using a Line-driver Output

Be sure to use shielded twisted-pair cable when extending the cable for a linedriver output,
and use an RS-422A Receiver for the receiver side.
The structure of twisted-pair cable is suitable for RS422 transmission. By twisting the two outputs as shown in the following diagram, electromotive force occurring in the wires is reciprocally canceled, and the noise element of normal mode is eliminated.

When using a line-driver output, a power supply of 5 VDC is needed for the Encoder.
The voltage will drop approximately 1 V per 100 m of cable.

Wiring Instruction

The most frequent problems encountered in transmitting an encoder's signal(s) to the receiving electronics are signal distortion and electrical noise. Either can result in gain or loss of encoder counts. Many problems can be avoided with good wiring and installation practices. The following descriptions and recommendations are presented as general guidelines and practices for fieldinstalled equipment.

Protecting Signals from Radiated and Conducted Noise

Take reasonable care when connecting and routing power and signal wiring on a machine or system. Radiated noise from nearby relays (relay coils should have surge suppressors), transformers, other electronic drives, etc. may be induced into the signal lines causing undesired signal pulses. Likewise, the encoder may induce noise into sensitive equipment lines adjacent to it.

Route machine power and signal lines separately. Signal lines should be Flush, twisted and routed in separate conduits or harnesses spaced at least 12 inches from power leads. Power leads are defined here as transformer primary and secondary leads, motor armature leads and any 120 VAC or above control wiring for relays, fans, thermal protectors, etc.

Maintain continuity of wires and shields from the encoder through to the controller, avoiding the use of terminals in a junction box. This helps to minimize radiated and induced noise problems and ground loops.

In addition, operation may be influenced by transients in the encoder power supply. Typically, encoder power should be regulated to within $\pm 5 \%$, and it should be free of induced transients.

Signal distortion can be eliminated by complementary encoder signals (line drivers), used with differential receivers (line receivers or comparators) at the instrument end, as shown here.

Grounding requirements, conventions and definitions are contained in the National Electrical Code. Local codes will usually dictate the particular rules and regulations that are to be followed concerning system safety grounds.

Signal Distortion

The majority of signal transmission problems involve electrical noise. Severity of the problem increases with transmission distance. Good shielding practice, as described previously, should be observed.

The primary cause of signal distortion is cable length, or more specifically, cable capacitance.

Generally, the receiving electronics will respond to an input signal that is either logical " 0 " or logical " 1 ". The region between logical 0 and logical 1 is undefined, and the transition through this region must be very rapid (less than about 1 microsecond). As the leading edge of the waveform is distorted, the transition time increases. At some point, the receiver becomes unstable and encoder counts may be gained or lost.

To minimize distortion, low capacitance cable (typically less than 40 picofarads per foot) should be used. The longer the cable, the greater the potential for signal distortion. Beyond some cable length, the signal must be "reshaped" before it can be used reliably.

Squarewave distortion is not usually significant for cable lengths less than about 50 feet (capacitance up to about 1000 picofarads). Encoders supplied with differential line drivers are recommended for applications with cable length requirements of hundreds of feet.

Greater assurance of signal integrity is best achieved when an encoder with line driver outputs is used in conjunction with a line receiver.

Micro Switch

Z15 Series

Z15-(1) B

(1) Description	G:Standard	H: High Sensitive (Only 060, 08)		
(2) Head Type	$01:$ Push Plunger	$010:$ Pin Push Plunger	$10:$ Short Push Plunger	$03:$ Long Push Plunger
	$030:$ Roller Plunger	$031:$ Cross Roller Plunger	$05:$ Lever	$052:$ Roller Lever
	$063:$ Hinge Short Lever	$062:$ Hinge Short Lever	$061:$ Hinge Long Lever	$06:$ Hinge Long Lever
	$060:$ Hinge Long Lever (Only H)	$08:$ Hinge Long Lever (Only H)	$09:$ Hinge Roller Short Lever	$091:$ Cross Hinge Roller Short Lever
	092 : Directional Roller Lever	$07:$ Hinge Roller Long Lever	$73:$ Hinge Roller Long Lever (Plastic Roller)	

General Specification

-The values in the blanks are ratings of Z 15 H type switch. The Z 15 H type switch has AC ratings of 125 V and 250 V .
-The aforementioned values are steady-state current values.
-The inductive load has a power factor of 0.4 or more (AC), and a time constant of $7 \mathrm{~m} / \mathrm{s}$ or less (DC).
-The inrush current is ten times larger than steady-state current in the lamp load, and six times, in the motor load.

Operating Speed	$0.01 \mathrm{~mm} / \mathrm{sec} \sim 0.5 \mathrm{~m} / \mathrm{sec}$	
Dielectric Strength	2000 VAC 1 Minute	
Life Cycle	Electrical	Min. 500,000
	Mechanical	Min. $20,000,000$
Vibration Resistance	$10 \mathrm{~Hz} \sim 55 \mathrm{~Hz}$ Durable amplitude 1.5 mm	
Shock Resistance	Malfunctional	Destruction
	Max. 100 G	
Ambient Humidity	$-25^{\circ} \mathrm{C} \sim+80^{\circ} \mathrm{C}($ with no icing $)$	
Tightening Torque	$35 \% \sim 85 \%$ RH	

- This is the case for the push-button type (The values are for the actuator for the lever type).

In the types other than the push-button type, the mechanical life is 10 million times, and the operating error is 1 ms or less.

Micro Switch

Z15 Series

Product Selection

Part Number	Head Type	OF	RF	PT	OT	ME	MD	FD	OP	KS

Z15G-03B	Long Push Plunger	$250 \sim 350 \mathrm{gf}$ 114 gf $(2.45 \sim 3.43 \mathrm{~N})$ $(1.12 \mathrm{~N})$	0.4 mm	5.5 mm	0.05 mm	21.8

\qquad

Z15G-031B	Cross Roller Plunger	$250 \sim 350 \mathrm{gf}$ 114 gf $(2.45 \sim 3.43 \mathrm{~N})$ $(1.12 \mathrm{~N})$	0.4 mm	3.58 mm	0.05 mm

II - 78	Industrial Controls Catalog	www.kacon.co.kr	Rev. 2/14 Data subject may change without notice.

| Part Number | Head Type | OF | RF | PT | OT ME |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Z15G-052B Roller Lever

141 gf	14 gf
$(1.38 \mathrm{~N})$	$(0.14 \mathrm{~N})$

$1.6 \mathrm{~mm} \quad 1.3 \mathrm{~mm} \quad 31.8 \mathrm{~mm} \underset{ \pm 0.8 \mathrm{~mm}}{ }$	28.6
Z4G1RO3B	

Z15G-063B Hinge Short Lever

160 gf	28 gf
$(1.57 \mathrm{~N})$	$(0.27 \mathrm{~N})$

$2.0 \mathrm{~mm} \quad 1.0 \mathrm{~mm} \quad 24.8 \mathrm{~mm} \underset{ \pm}{ } \begin{aligned} & 19.0 \mathrm{~mm} \\ & \text { Z4G1RO5B }\end{aligned}$

Z15G-062B	Hinge Short Lever	95 gf $(0.95 \mathrm{~N})$	$(0.18 \mathrm{~g})$

$4.2 \mathrm{~mm} \quad 0.95 \mathrm{~mm} \quad 26.2 \mathrm{~mm}$| 19.0 |
| :---: |
| $\pm 0.8 \mathrm{~mm}$ |

\qquad

Z15G - 061B	Hinge Long Lever	80 gf
	$(0.78 \mathrm{~N})$	$(0.15 \mathrm{~N})$

$4.8 \mathrm{~mm} \quad 1.12 \mathrm{~mm} \quad 27.2 \mathrm{~mm}$| 19.0 |
| :---: |
| $\pm 0.8 \mathrm{~mm}$ |

Micro Switch

Z15 Series

Product Selection

Z15G-030B
Z15G-031B

Micro Switch

Z15 Series

Dimension

| II - 82 | Industrial Controls Catalog | www.kacon.co.kr |
| :--- | :--- | :--- | | Rev. 2/14 |
| :--- |
| Data subject may change without notice. |

Dimension

Micro Switch

Z15 Series

Dimension

Z15G-073B

Diagram

Panel Cut Out

II - 84 Industrial Controls Catalog	www.kacon.co.kr	Rev. 2/14 Data subject may change without notice.

Operating characteristics	Category	Abbr.	Term	Unit	Definition
Center of the switch mounting hole	Force	Force required for operation	OF	$\begin{aligned} & \mathrm{g}, \mathrm{~kg} \\ & \mathrm{~g}-\mathrm{mm} \end{aligned}$	Force on the actuator required for the motion from the free position to the operating position
		Restoring force	RF	$\begin{gathered} \mathrm{g}, \mathrm{~kg} \\ \mathrm{~g}-\mathrm{mm} \end{gathered}$	Force on the actuator required for the motion from the operating limit position to the restoring position
		Force required for entire motion	TF	$\begin{gathered} \mathrm{g}, \mathrm{~kg} \\ \mathrm{~g}-\mathrm{mm} \end{gathered}$	Force on the actuator required for the motion from the operating position to the operating limit position
		Motion to the operating position	PT	mm, deg	Distance or angle from the free position of the actuator to the operating position
		Motion after operation	OT	mm, deg	Distance or angle from the operating position of the actuator to the operating limit position
	Motion	Hysteresis distance	MD	mm, deg	Distance or angle from the operating position of the actuator to the restoring position
		Total motion	TT	mm , deg	Distance or angle from the free position of the actuator to the operating limit position
	Position	Free position	FP	mm, deg	The position of the operating part when no force is applied from outside
		Operating position	OP	mm, deg	The position of the actuator when the external force is applied to the actuator and the moving contact reverses from the free position
		Restoring position	RP	mm , deg	The position of the actuator when the external force to the actuator is reduced and the moving contact reverses from the operating position to the free position
		Operating limit position	TTP	$\begin{aligned} & \mathrm{mm}, \\ & \mathrm{deg} \end{aligned}$	The position of the actuator when the actuator reaches the actuator stop position

SAFETY COVER

ZSC1

Rev. 2/14 Data subject may change without notice.	www.kacon.co.kr	Industrial Controls Catalog

Micro Switch

Z15 Series

Electrical Caution

- Electrical conditions
- Check the rating because the contact has different breaking capacities for AC and DC.
-For microvoltage and microcurrent, use the contact for microload.
-Check the inrush current, steady-state current and inrush time.
- Measure the contact resistance at DC 6 V ~ DC 8 V and 1 A
(Comply with the voltage drop method for the microcurrent).
-The difference between the steady-state current and inrush current may vary according to the load type. Check the inrush current value.
- The ratings are based on the following conditions.
- Inductive load: power factor 0.4 or more (AC), time constant 7 ms or less (DC)
-Lamp load: Inrush current $\geq 10 \times$ Steady-state current
-Motor load: Inrush current $\geq 6 \times$ Steady-state current
- Notes for the circuit
-In the inductive load breaking circuit, the surge and inrush current at the opening/closing of the circuit may cause contact problems.
Therefore, it is desirable to insert a protection circuit as follows.

Normally used for DC circuits. A resistor of several ohms is required. When used for AC circuit, the load must be small.
R: $10 \Omega \sim 100 \Omega$
C: $0.05 \sim 0.1 \mathrm{uF}$

Used both for AC and DC circuits.
R: 10Ω
C: $0.1 \sim 0.2$ uF

Used only for DC circuits. Select a diode with sufficient margin to the inverse withstand voltage.

Used both for AC and DC circuits. Select a varistor that is 1.5 times higher than the power supply voltage.
-Do not connect different polarities and types of power to one switch contact.
-Do not apply the voltage between contacts (This causes the mixed contact and contact weld)
(X)

- Application to the electronic circuits (low voltage and current)
1.The micro switch generates bouncing and chattering between contacts when it is switched on/off.

This causes troubles, including noises and wrong pulses, to the electronic circuits or acoustic devices.
2.When bouncing and chattering cause problems, studies are required to provide an absorption circuit in addition to the CR circuit.
3.In the areas that require high contact reliability, the Ag contacts, which have been widely used, are hardly used.

Au contacts have high performances for microvoltage and microcurrent.

Mechanical Caution

- Mechanical conditions
- Select the actuator according to the operating method.
-Do not apply excessive force to the actuator.
- Check the switching speed and frequency.

1) If the switching speed is too slow and unstable, poor contact or contact weld may occur.
2) If the switching speed is too high, switching may not be completed.

- Precautions
-The operating method, cam or dog type, frequency, motion after switching significantly influence the prodvvuct life and accuracy. Use the cams or dogs that have general shapes.
-Do not allow the load to one side of the switch actuator, and prevent the partial wear.
- Adjust the actuator so that it does not pass beyond OT.

The proper operating stroke is $70 \% \sim 100 \%$ of the standard OT.
-If OT passes beyond the limit, it may cause failure.

- Use the switch considering the characteristics of the actuator.

In the case of the roller arm lever, do not apply force in the arrowed direction in the figure.

- Avoid the modification of the operating position by processing the actuator.

II - 86	Industrial Controls Catalog	www.kacon.co.kr	Rev. 2/14 Data subject may change without notice.

Mounting Caution

- Environment

- If the switch is not waterproof and sealed, do not use the product in the environment where oil or water scatters or bursts.

Use the protective cover to avoid direct exposure to the liquid. A limit switch is more proper for this case than the standard switch.
-Contact us when using the limit switch outside or with special cutting oil so that the deterioration of the switch material is expected.
-Place the switch on the place where it is not directly exposed to the processing waste or dusts.
Protect the actuator and switch body from the cutting waste or foreign matters.
-Do not use the switch in the temperature and air conditions other than specified.
The allowable ambient temperature varies according to the product type (Check the product specifications).
In the case of abrupt thermal change, the heat impact deforms the switch and causes failure.
-When mounting the switch in the place where operating errors or accidents may happen in the normal operator or
equipment conditions, additional measures are required.

- The panel mounting type
- Use M4 screws for fixing. Mount the product firmly using flat or spring washers.

The proper tightening torque is $12 \sim 15 \mathrm{kgf} \cdot \mathrm{cm}(1.18 \sim 1.47 \mathrm{~N} \cdot \mathrm{~m})$.
-The proper tightening torque for the hexagonal nut of the actuator is $50 \mathrm{kgf} \cdot \mathrm{cm}$ ($4.9 \mathrm{~N} \cdot \mathrm{~m}$).
-When mounting the panel mounting pushbutton type on the side using screws, remove the hexagonal nuts from the actuator part.
-For the connection with lead terminals, use crimp terminals at a tightening torque of $8 \sim 12 \mathrm{kgf} \cdot \mathrm{cm}$
(0.78 ~ $1.18 \mathrm{~N} \cdot \mathrm{~m}$). (Recommended wire spec.: VCT $1.25 \mathrm{~mm}^{2}$ twowire, three-wire)

- The drip-proof type
-Do not soak the product in oil because this product is not completely oil-tight.
- Avoid using this product in the condition where temperature abruptly changes.

(6) Specifications and materials can change without prior notice.

Micro Switch

V Series

Part Number Description

V1 15F-2 ${ }^{\text {c }}$	No mark : Standard	V : Special (Only 01)		
(1) Description				
(2) Head Type	01 : Push Plunger	06 : Lever	070 : Round Lever	060 : Long Lever
	07 : Roller Long Lever	08: Short Lever	09 : Roller Short Lever	
VAP - 1 (2)				
(1) Button Size	$10: \varnothing 10$	13: 113	18: 18	
(2) Button Color	R : Red	G : Green	Y: Yellow	K : Black

General Specification

-The aforementioned values are steady-state current values.
-The inductive load has a power factor of 0.4 or more (AC), and a time constant of $7 \mathrm{~m} / \mathrm{s}$ or less (DC).
-The inrush current is ten times larger than steady-state current in the lamp load, and six times, in the motor load.

Operating Speed	$0.1 \mathrm{~mm} / \mathrm{sec} \sim 0.5 \mathrm{~m} / \mathrm{sec}$
Dielectric Strength	$1,500 \mathrm{VAC} 1$ Minute
Life Cycle	Electrical
	Mechanical
Vibration Resistance 100,000	
Shock Resistance	Min. $1,000,000$
Ambient Temperature	$10 \sim 55 \mathrm{~Hz}$ (durable amplitude 1.5 mm)
Ambient Humidity	30 G

The material and the specification of the product can be changed without notice for better quality.

| II - 88 | Industrial Controls Catalog | Www.kacon.co.kr |
| :--- | :--- | :--- | | Rev. 2/14 |
| :--- |
| Data subject may change without notice. |

Product Selection

Micro Switch

V Series

Product Selection

	Button Color	Part Number	Contact Form	Contact \& Contact Distance	PT	MD	OT	OP
	Red Green	$\begin{aligned} & \text { VAP - 10R } \\ & \text { VAP - 10G } \end{aligned}$	1N/O+1N/C	0.5 mm	1.6 mm Maximum	0.4 mm Maximum	0.8 mm Minimum	$\begin{aligned} & 14.7 \\ \pm & 0.6 \mathrm{~mm} \end{aligned}$
	Red	VAP - 13R						
	Green	VAP - 13G						
	Yellow	VAP - $13 Y$	1N/O + 1N/C	0.5 mm	1.6 mm Maximum	0.4 mm Maximum	0.8 mm Minimum	$\begin{gathered} 14.7 \\ \pm 0.6 \mathrm{~mm} \end{gathered}$
	Blue	VAP - 13B						
	Black	VAP - 13K						
	Red	VAP - 18R						
	Green	VAP - 18G						
	Yellow	VAP -18Y	1N/O + 1N/C	0.5 mm	1.6 mm Maximum	0.4 mm Maximum	0.8 mm Minimum	$\begin{gathered} 14.7 \\ \pm 0.6 \mathrm{~mm} \end{gathered}$
	Blue	VAP - 18B						
	Black	VAP - 18K						

Dimension

II -90 Industrial Controls Catalog	www.kacon.co.kr	Rev. 2/14 Data subject may change without notice.

Micro Switch

V Series

Dimension

VAP-18

Glossary

Operating characteristics	Category	Abbr.	Term	Unit	Definition
Center of the switch mounting hole	Force	Force required for operation	OF	$\begin{gathered} \mathrm{g}, \mathrm{~kg} \\ \mathrm{~g}-\mathrm{mm} \end{gathered}$	Force on the actuator required for the motion from the free position to the operating position
		Restoring force	RF	$\begin{aligned} & \mathrm{g}, \mathrm{~kg} \\ & \mathrm{~g}-\mathrm{mm} \end{aligned}$	Force on the actuator required for the motion from the operating limit position to the restoring position
		Force required for entire motion	TF	$\begin{aligned} & \mathrm{g}, \mathrm{~kg} \\ & \mathrm{~g}-\mathrm{mm} \end{aligned}$	Force on the actuator required for the motion from the operating position to the operating limit position
	Motion	Motion to the operating position	PT	mm, deg	Distance or angle from the free position of the actuator to the operating position
		Motion after operation	OT	mm, deg	Distance or angle from the operating position of the actuator to the operating limit position
		Hysteresis distance	MD	mm, deg	Distance or angle from the operating position of the actuator to the restoring position
		Total motion	TT	$\begin{aligned} & \mathrm{mm}, \\ & \mathrm{deg} \end{aligned}$	Distance or angle from the free position of the actuator to the operating limit position
	Position	Free position	FP	mm , deg	The position of the operating part when no force is applied from outside
		Operating position	OP	$\begin{aligned} & \mathrm{mm}, \\ & \mathrm{deg} \end{aligned}$	The position of the actuator when the external force is applied to the actuator and the moving contact reverses from the free position
		Restoring position	RP	mm, deg	The position of the actuator when the external force to the actuator is reduced and the moving contact reverses from the operating position to the free position
		Operating limit position	TTP	mm , deg	The position of the actuator when the actuator reaches the actuator stop position

Terminal

| II - 92 | Industrial Controls Catalog | www.kacon.co.kr |
| :--- | :--- | :--- | | Rev. 2/14 |
| :--- |
| Data subject may change without notice. |

Limit Switch

ZXL Series

Part Number Description

General Specification

Contact Form		1N/O+1N/C
Contact Material		Ag alloy / 24K gold plated
Rated Current		12A 250VAC-resistance load
Insulation Resistance		Min. 100M 2 500VDC Insulation resistance
Contact Resistance		Max. $15 \mathrm{~m} \Omega$
Dielectric Strength		2,200VAC $50 / 60 \mathrm{~Hz} 1$ Minute
Life Cycle	Mechanical	Min. 10,000,000
	Electrical	Min. 1,000,000
Operation Speed		$1 \mathrm{~mm} \sim 1 \mathrm{~m} / \mathrm{sec}$
Vibration Resistance		$10 \sim 55 \mathrm{~Hz}$ Dual wave length 1.5 mm
Shock Resistance	Malfunction	1,000m/s² Max. approx. 100 G
	Destruction	$300 \mathrm{~m} / \mathrm{s}^{2}$ Max. approx. 30G
Degree Of Protection		IP67
Ambient Temperature		$-10 \sim+80^{\circ} \mathrm{C}$ ((with no icing)
Ambient Humidity		Max. 95\%RH
Housing Material		Aluminum die-casting
Weight		Approx. 270 g

Limit Switch

ZXL Series

Performance And Specification

Rated Voltage	Non-Inductive		Inductive	
	Resistance Load	Lamp Load	Motor Load	Inductive Load
125VAC	16A	5A	8A	16A
250VAC	12A	3A	5A	12A
500VAC	10A	2.5 A	2.5 A	10A
30VDC	8A	6A	6A	8A
125 VDC	1A	0.3 A	0.3 A	1A
250VDC	0.5A	0.2A	0.2A	0.5A

Contact Block

Internal Circuit Drawing

| II-94 | Industrial Controls Catalog | Www.kacon.co.kr |
| :--- | :--- | :--- | | Rev. 2/14 |
| :--- |
| Data subject may change without notice. |

Detection

Product Selection

	Standard	ZXL-302									
	LED Lamp	ZXL-302D	Roller Plunger	$\begin{gathered} 2,720 \mathrm{gf} \\ (26.67 \mathrm{~N}) \end{gathered}$	$\begin{gathered} 910 \mathrm{gf} \\ (8.92 \mathrm{~N}) \end{gathered}$	1.7 mm	5.6 mm	1 mm	-	$\begin{gathered} \pm 0.8 \\ \mathrm{~mm} \end{gathered}$	$\begin{aligned} & 39.5 \\ & \mathrm{~mm} \end{aligned}$
	Neon Lamp	ZXL-302A									

| | Standard | ZXL-702 | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Limit Switch

ZXL Series

Product Selection

Product Selection

Limit Switch

ZXL Series

Dimension

Push Plunger
Roller Plunger
ZXL-301

Ball Plunger
ZXL-303

Adjustable Roller Lever
ZXL - 703, 713

Roller Lever
ZXL-702

Adjustable Rod Lever
ZXL-704

II - 98	Industrial Controls Catalog	www.kacon.co.kr	Rev. 2/14 Data subject may change without notice.

Limit Switch

ZXL Series

The York Roller Lever

The Operation Of The Built - In Switch In A Accordance With The Movement Of The York

Basic Accessories

Indicator Lamp Item	Rated Voltage	Rated Current	Order code
Neon lamp	100 ~ 240VAC	$0.6 \sim 2 \mathrm{~mA}$	AC Load : ZXL-■ A
LED Iamp	12 ~ 24VAC/DC	Approx. 1 mA	DC Load : ZXL - - D

- There are two types of lamps: Neon and LED lamps.
- The circuit check and fault detection are easy because the switch operation status is easily checked outside.
- The user can change the mode of operation status indication by changing the lamp holder mounting direction by 180° (up or down) inside the indicator lamp cover.
- Additional wiring is not required for the lamp terminals because the spring attached to the indicator lamp cover comes in contact with the terminal screw of the built-in switch.

| II - 100 | Industrial Controls Catalog | www.kacon.co.kr |
| :--- | :--- | :--- | | Rev. 2/14 |
| :--- |
| Data subject may change without notice. |

Operation Indicator Lamp Direction Shift

- The LED type does not require the change of polarity because it has a built-in rectifier.
- The indicator lamp cover is formed by coating transparent resin on the Al die casting material, and can be used in the place with cutting oil. In addition, the operation status (ON in operation or non-operation) can be checked outside.
- This is ideal for the places where checking the passage of products is difficult on the conveyor line.

- The factory setting is "ON in operation".
- For the use with ON in non-operation, shift the LED downward as in the figure.

Indication Lamp Wiring And Circuit Diagram

Internal Wiring Diagram
Internal Circuit Drawing

Lights on when in non-operation [Lamp ON when NC ON]

Lights on when in operation [Lamp ON when NO ON]

Mounting

Fastening bolt is shipped together with the product.

How To Change The Attached Direction Of The Head Part

The head position can be changed in four directions by loosening four bolts.

The arrowed internal parts must rotate in the same direction as the head part rotation.

Pressurized Terminal In Use

Short Bar, Available On Separate Orders

If the shorting terminal is used as in the figure, the switch can be the single pole double throw type.

Rev. 2/14	www.kacon.co.kr	Industrial Controls Catalog
Data subject may change without notice.	II 101	

Limit Switch

ZXM Series

Part Number Description
ZXM - $\mathbf{1}$ (2)

	301 : Push Plunger	$726: \varnothing 50$ Adjustable Roller Lever - Rubber
	302 : Roller Plunger	$901:$ Spring Rod
	$312:$ Cross Roller Plunger	$902:$ Spring Wire
	$702:$ Roller Lever	$903:$ Spring Rod - Plastic Tip
	$703:$ Adjustable Roller Lever	$923:$ Spring Rod - Metal Tip
	704 : Adjustable Rod Lever	
(2) Indicator Lamp	No mark : Standard (No Indicatior)	D: LED Lamp (12 ~24VDC/AC)

General Specification

Contact Form	1N/O + 1N/C
Contact Material	Ag alloy/24K Au Plate
Rated Current	6A 250VAC • Resistance load
Insulation Resistance	Min. 100M Ω 500VDC Insulation resistance
Contact Resistance	Max. $25 \mathrm{~m} \Omega$
Dielectric Strength	1,500VAC $\cdot 50 / 60 \mathrm{~Hz} 1$ Minute
Life Cycle	Min. 1,000,000
	Min. 300,000
Vibration Resistance	10 ~ 55 Hz dual wave length 1.5 mm
Shock Resistance	98m/s ${ }^{2} \cdot \mathrm{Max} .10 \mathrm{G}$
	$294 \mathrm{~m} / \mathrm{s}^{2}$. Max. 30G
Degree Of Protection	IP65
Ambient Temperature	$-20 \sim+60^{\circ} \mathrm{C} \cdot$ (with no icing)
Ambient Humidity	Max. 90\%RH
Weight	Approx. $130 \sim 190 \mathrm{~g}$

Regular

Rated Voltage	Non-Inductive				Inductive			
	Resistive Load		Lamp Load		Motor Load		Inductive Load	
	NC(A)	NO(A)	NC(A)	NO(A)	NC(A)	NO(A)	NC(A)	NO(A)
125VAC	6		1.5	0.7	2	1		
250VAC	6		1	0.5	1.5	0.8		
500VAC	2		0.75	0.35	0.75	0.4		
30VDC	5		3		3		4	
$\begin{aligned} & 125 \mathrm{VDC} \\ & 250 \mathrm{VDC} \end{aligned}$	0.4	0.2	-		-		-	

Contact Block

Indication Lamp Name Plate

ZXM-101	ZXM-102	ZXM-103
24K Au Plate	12 ~ 24VAC/DC LED Lamp	80~240VAC Neon Lamp
II-102 Industrial Controls Catalog	www.kacon.co.kr	Rev. 2/14 Data subject may change without notice.

Product Selection

Limit Switch

ZXM Series

Product Selection

Limit Switch

ZXM Series

Dimension

Operation indicator lamp Ratings

Indicator Lamp	Item	Rated voltage	Rated current
NEON lamp	$80 \sim 240$ VAC	$0.2 \sim 1.5 \mathrm{~mA}$	AC load: ZXM - \square A
LED lamp	$12 \sim 24 V D C$	$0.5 \sim 1.5 \mathrm{~mA}$	DC load: ZXM - $\square D$

- There are two types of lamps: Neon and LED lamps.
- The circuit check and fault detection are easy because the switch operation status is easily checked outside.
- This is ideal for the places where checking the passage of products is difficult on the conveyor line.

- The LED type has the + or - polarity.

Pay attention to the polarity, which is indicated inside.

- The lens section of the indicator lamp cover ensures sufficient brightness with its diffusible resin diamond cut structure.
- The waterproof performance is excellent because the indicator lamp and cover are formed together.

Operation indicator lamp direction shift

- The lamp terminal does not require additional wiring, because it is connected via the spring in the indicator cover and the built-in switch terminal bolts.
- The indicator lamp can be selected between the modes of "ON in operation"

and "ON in nonoperation".
- The indicator lamp can be shifted by removing the lamp holder inside the cover using tools including drivers.

Lamp holder removal

ON in operation

ON in nonoperation

- The user can change the mode of operation status indication by changing the lamp holder mounting direction by 180° (up or down) inside the indicator lamp cover.
- The factory setting is "ON in operation"

Head mounting

In the lever type, the head can be placed in one of four directions at 90° rotation interval.

To change the head direction, loosen the black bolt on the top of the head, rotate the head, and tighten the bolt again.

Operation indicator lamp wiring and circuit diagram
Internal wiring

ON in non-operation [Lamp ON when NC ON]

ON in operation
(6) Caution: Use the same power supply for terminals

Connect the same polarity for terminals 1 and 4 , and 2 and 3 .

Built-in switch circuit diagram

24K Au Plate

Direct contact opening \Rightarrow Direct Openning

1. The device is safe with the mechanism that cuts off the circuit when the switch contact weld occurs.
2. If the contact weld appears, the plunger directly pushes up the movable terminal to forcefully separate the NC contact and cut off the circuit.
3. The direct opening function is for the Nc contact only.
4. The plunger continues to push the movable terminal during operation, and the circuit is not cut off by mechanical impact.

Welding

Contact weld After direct opening

Rev. 2/14 Data subject may change without notice.	www.kacon.co.kr	Industrial Controls Catalog

Limit Switch

ZXM Series

Mounting on the panel

1. This product can be mounted on the front or rear.
2. Before the installation of the product, determine its position so that the OT of the actuator is proper. \Rightarrow An excessive OT leads to a decrease in the product life due to the strong wear and fatigue
3. After determining the mounting position, refer to the following types to process the panel.
4. Be sure to use spring washers for the mounting bolts so that the product will not be removed by vibration or impact.

Type 1. Front Attached - Direct Tap Processing on the panel

Attachment hole
processing Drawing

Type 2. Front Attachment - Direct hole processing on the panel

Attachment hole
processing Drawing

Type 3. Rear Attachment - Using M5 Tap of the product

$$
\begin{aligned}
& \text { Attachment hole }
\end{aligned}
$$

(ax The bolts and nuts above are shipped together with the product.

Wires

1. The proper size of wires that pass through the wiring lead-out (NBR) is $\varnothing 6.6 \sim \varnothing 8.5$
2. The use of VCTF cable is desirable.
3. The following table shows the specifications of the VCTF cable Refer to the table for cable selection.

Small Line Number	Conductor (L)	Completed outer diameter (I)
2 wire	$0.75 \mathrm{~mm}^{2}$	$\varnothing 6.6 \mathrm{~mm}$
	$1.25 \mathrm{~mm}^{2}$	$\varnothing 7.4 \mathrm{~mm}$
	$2.0 \mathrm{~mm}^{2}$	$\varnothing 8.0 \mathrm{~mm}$
3 wire	$0.75 \mathrm{~mm}^{2}$	$\varnothing 7.0 \mathrm{~mm}$
	$1.25 \mathrm{~mm}^{2}$	$\varnothing 7.8 \mathrm{~mm}$
	$2.0 \mathrm{~mm}^{2}$	$\varnothing 8.5 \mathrm{~mm}$
4 wire	$0.75 \mathrm{~mm}^{2}$	$\varnothing 7.6 \mathrm{~mm}$
	$1.25 \mathrm{~mm}^{2}$	$\varnothing 8.5 \mathrm{~mm}$

VCTF : The cable for 300 V or less indoor small appliances, which is manufactured by insulating stranded copper wires with PVC.
4. When wiring the switch terminals, do not directly connect the lead wire to the terminal, but use the O-type clamp terminal with insulation shielding.
5. After wiring, be sure to mount the cover before applying the power. Otherwise, it may lead to an electric shock.

Clamp terminal specifications

O-terminal wiring reference

Tightening torque

When mounting the product, excessive force for bolts or nuts may damage the product. Observe the following tightening torques.

Front Attachment	M4-Max.12kgf.cm / 1.2N.m
Rear Attachment	M5- Max.19.6kgf.cm / 2.0N.m
Switch Terminal	M3- Max. 4.9kgf.cm / 0.5N.m

Environment

- Do not use the product under water or oil, nor in the environment where it is influenced by oil or water because this product is not completely oiltight.
- Do not use the product in the places where there are risks of fire and corrosion.
- Actual conditions may affect the product reliability including the guaranteed life and tightness.

- Front attachment-M4×35 2EA, M4×20 2EA

Rear Attachment-M5×10 4EA

II - 108	Industrial Controls Catalog	www.kacon.co.kr	Rev. 2/14 Data subject may change without notice.

Limit Switch

ZXG Series

Part Number Description
(ϵ

ZXG - 0

(1) Head Type | | $301:$ Push Plunger | $507:$ Roller Lever |
| :--- | :--- | :--- |
| | $311:$ Short Push Plunger | $517:$ Roller Short Lever |
| | $321:$ Long Push Plunger | $527:$ Directional Roller Lever |
| | $302:$ Roller Plunger | 537 : Directional Roller Short Lever |
| | $312:$ Cross Roller Plunger | $902:$ Spring Wire |
| | $501:$ Hinge Lever | $903:$ Spring Rod - Plastic Tip |
| | $511:$ Hinge Short Lever | $923:$ Spring Rod - Metal Tip |

F This model is under development. Please contact to local agent for order.

General Specification

Contact Form		1N/O + 1N/C
Contact Material		Ag alloy / 24K Au Plate
Rated Current		10A 250VAC•resistance load
Insulation Resistance		Min. W 100M Ω 500VDC Insulation resistance
Contact Resistance		Max. $15 \mathrm{~m} \Omega$
Dielectric Strength		2,000VAC $50 / 60 \mathrm{~Hz} 1$ Minute
Life Cycle	Mechanical	Min. 10,000,000
	Electrical	Min. 200,000
Vibration Resistance		$10 \sim 55 \mathrm{~Hz}$ dual wave length 1.5 mm
Shock Resistance	Malfunctional	98m/s². Max. 10G
	Destruction	$294 \mathrm{~m} / \mathrm{s}^{2}$. Max. 30G
Degree Of Protection		IP64
Ambient Temperature		$-20 \sim+60^{\circ} \mathrm{C}$ (with no icing)
Ambient Humidity		Max. 95\% RH
Weight		Approx. 60g

Limit Switch

ZXG Series

Product Selection

	Part Number	Contact Form	Degree of Protection	Head Type	OF	RF	PT	MD	OT	OP
	ZXG-301	1N/O + 1N/C	IP64	Push Plunger	$\begin{gathered} 600 \mathrm{gf} \\ (5.88 \mathrm{~N}) \end{gathered}$	$\begin{aligned} & 100 \mathrm{gf} \\ & (0.98 \mathrm{~N}) \end{aligned}$	2.0 mm	0.8 mm	0.8 mm	$\begin{gathered} 30 \\ \pm 0.8 \mathrm{~mm} \end{gathered}$
	ZXG-311	1N/O + 1N/C	IP64	Short Push Plunger	$\begin{gathered} 600 \mathrm{gf} \\ (5.88 \mathrm{~N}) \end{gathered}$	$\begin{gathered} 100 \mathrm{gf} \\ (0.98 \mathrm{~N}) \end{gathered}$	2.0 mm	0.8 mm	0.6 mm	$\begin{gathered} 21.8 \\ \pm 0.8 \mathrm{~mm} \end{gathered}$
	ZXG-321	1N/O + 1N/C	IP64	Long Push Plunger	$\begin{gathered} 600 \mathrm{gf} \\ (5.88 \mathrm{~N}) \end{gathered}$	$\begin{gathered} 100 \mathrm{gf} \\ (0.98 \mathrm{~N}) \end{gathered}$	2.0 mm	0.8 mm	5.0 mm	$\begin{gathered} 4.4 \\ \pm 1.2 \mathrm{~mm} \end{gathered}$
	ZXG-302	1N/O + 1N/C	IP64	Roller Plunger	$\begin{gathered} 600 \mathrm{gf} \\ (5.88 \mathrm{~N}) \end{gathered}$	$\begin{gathered} 100 \mathrm{gf} \\ (0.98 \mathrm{~N}) \end{gathered}$	2.0 mm	0.8 mm	0.8 mm	$\begin{gathered} 33.3 \\ \pm 1.2 \mathrm{~mm} \end{gathered}$
	ZXG-312	1N/O + 1N/C	IP64	Cross Roller Plunger	$\begin{gathered} 600 \mathrm{gf} \\ (5.88 \mathrm{~N}) \end{gathered}$	$\begin{gathered} 100 \mathrm{gf} \\ (0.98 \mathrm{~N}) \end{gathered}$	2.0 mm	0.8 mm	0.8 mm	$\begin{gathered} 33.3 \\ \pm 1.2 \mathrm{~mm} \end{gathered}$

150gf 40gf (1.47N) $\quad(0.39 \mathrm{~N})$ 13.5 m

Product Selection

Limit Switch

ZXG Series

Dimension

| II - 112 | Industrial Controls Catalog | www.kacon.co.kr |
| :--- | :--- | :--- | | Rev. 2/14 |
| :--- |
| Data subject may change without notice. |

Limit Switch

ZXG Series

Contact Types

COM Terminal NO Terminal NC Terminal

Glossary

II - 114	Industrial Controls Catalog	www.kacon.co.kr	Rev. 2/14 Data subject may change without notice.

Caution

1. Note the following for the circuit wiring for the limit switch.

Make sure that the wrong polarity is not connected to both ends of the contact (A and B contacts). An abnormal switch operation may lead to fire.

Make sure that the wrong polarity is not connected to both ends of the contact (A and B contacts). An abnormal switch operation may lead to fire or damage to the product.
2. Note the following for determining the positions of the dog and switch.

If the dog that conducts rotational or straight motion has a sharp edge, it may lead to the damage to the switch, operating error and reduced life.

Design the dog in the circled or leaned shape so that there will be no impact on the friction surface.

If the dog comes in contact with the switch lever, it may be damaged or its life may be shortened. Determine the operating position so that it will not touch the lever.

The partial contact between the dog and roller may cause operating errors or damage. Position the dog on the center of the roller.

3. Note the following for designing the dog.

The relationships among the dog velocity (V), angle ($\boldsymbol{\alpha}$) and actuator shape should be fully considered.
The proper dog angle (α) is $30^{\circ} \sim 45^{\circ}$, and the proper operating velocity (V) is $0.5 \mathrm{~m} / \mathrm{s}$ or less.
When the dog angle (α) exceed 45°, a fast dog velocity may damage the switch head.

Limit Switch

ZXG Series

Caution

1) Roller Lever Type Actuator

Status	Dog $\mathrm{Velocity(} \mathrm{~V}$)	

2) Plunger Type Actuator

Head Type	Dog velocity (V)
Roller Plunger Type	$0.25 \leq \mathrm{V} \leq 0.5 \mathrm{~m} / \mathrm{s}$

3) Yoke Type Actuator

4) Spring Rod Type Actuator

Design the special dog so that it will reach $1 / 3$ of the actuator length (total spring load length) L.

II-116	Industrial Controls Catalog	Rev. 2/14 Data subject may change without notice.

Caution

4. Stroke setting based on the dog movement

If the stroke setting for the limit switch is based on the dog movement, instead of on the actuator angle, the proper stroke of the limit switch is as follows.

The dog movement X that corresponds to the proper stroke:
$X=R \sin \theta+\frac{R(1-\cos \theta)}{\operatorname{Tan} \alpha}(\mathrm{mm})$
α : Dog angle
θ : Proper stroke angle
R : Actuator length
X: Dog movement

The y value, which is the length between the reference mounting position and the dog bottom surface, which corresponds to the proper stroke:

$y=a+b+r(m m)$

a : Length between the reference mounting position and the actuator center
b: Rcos θ
r : Roller radius
Y : Length from the reference mounting position and the dog bottom surface

5. Roughness of the dog surface

The proper roughness of the dog surface is $\nabla \nabla \nabla(6.3 \mathrm{~S})$, and the suitable quenching level is HV450.
Applying the grease (Molybdenum disulfide) to the contacting surface
between the actuator and dog can reduce the friction and ensure smooth contact operation.

Limit Switch

ZXG Series

Terminal protection cover

- The terminal protection cover is made from durable plastic. Excessive force may deform or damage the product.
- The terminal protection cover can be removed or mounted using a (-) shaped driver.
- The proper size of wires that pass through the wiring lead-out (NBR) is $\varnothing 6.6 \sim \varnothing 8.5$.
- The purpose of the terminal protection cover is to prevent electric shock. Be sure to mount it before use.
- Do not use the product in or in contact with oil, because this product is not completely oil-tight. Contact our main office for the waterproof treatment for the terminal.
- Do not use this product in special environments (e.g., organic solvent, acid, alkali and cutting oil)

Terminal protection cover assembly/disassembly

1. Use a (-) driver and push the terminal protection cover in the arrowed directions to remove it.
2. After the wires are connected to terminal bolts, they can be led out to the left, right or downward directions.
3. The terminal protection cover can also be mounted in the user's desired direction (left or right).
4. The assembly is completed by pushing the terminal protection cover in the arrowed assembly direction until the click sound is heard.

Terminal mold type (IP64)

- The terminal part is waterproof (epoxy resin filling) (IP64) and heat-resistant.
- The product is provided with wires connected.
- Specify the wire length and lead-out direction in the order
- All general type products can be produced.

Tightening torque

The application of excessive force to bolts or nuts may lead to the damage to the product. Use the following tightening torque.

Side	M4 - Maximum 12kgf.cm / 1.2N.m
Body (Nut)	M4 - Maximum 12kgf.cm / 1.2N.m
Switch terminal	M3.5 - Maximum6kgf.cm 06N.m

Wires

- The proper size of wires that pass through the wiring lead-out (NBR) is $\varnothing 6.6$ ~ \varnothing ? 8 .
- The use of VCTF cable is desirable.

■Wire specifications

No. of wire	Conductor (L)	Entire diameter (I)
2	$0.75 \mathrm{~mm}^{2}$	$\varnothing 6.6 \mathrm{~mm}$
	$1.25 \mathrm{~mm}^{2}$	$\varnothing 7.4 \mathrm{~mm}$
	$2.0 \mathrm{~mm}^{2}$	$\varnothing 8.0 \mathrm{~mm}$
3	$0.75 \mathrm{~mm}^{2}$	$\varnothing 7.0 \mathrm{~mm}$
	$1.25 \mathrm{~mm}^{2}$	$\varnothing 7.8 \mathrm{~mm}$

QVCTF: The cable for 300 V or less indoor small appliances, which is manufactured by insulating stranded copper wires with PVC.

- When wiring the switch terminals, use the O-type crimp terminal with insulation shielding.

Mounting

1. Side mounting

Process holes, and use M4 bolts to fix the product. The proper tightening torque is $12 \mathrm{kgf} \cdot \mathrm{cm} / 1.2 \mathrm{~N} \cdot \mathrm{~m}$.

2. Panel mounting (ZXG-301, 302 and 312)

After processing the panel as follows, and use the M12 hexagonal nuts attached to the product to fix it with a tightening torque of $50 \mathrm{kgf} \cdot \mathrm{cm} / 5.1 \mathrm{~N} \cdot \mathrm{~m}$ or less.

| II - 118 | Industrial Controls Catalog | www.kacon.co.kr |
| :--- | :--- | :--- | | Rev. 2/14 |
| :--- |
| Data subject may change without notice. |

Limit Switch

ELN Series

Part Number Description

ELN - 1

(1) Head Type $03:$ Push Plunger $030:$ Roller Plunger 031 : Cross Roller Plunger 09 : Roller Lever Plunger

General Specification

Contact Form		1N/O + 1N/C			
Contact Material		Ag alloy			
Contact \& Contact Distance		0.5 mm			
Insulation Resistance		100M $\Omega 500 \mathrm{VDC}$			
Contact Resistance		Max. $50 \mathrm{~m} \Omega$			
NonInductive	Resistance Load		$\begin{aligned} & 15 \text { 125VAC } \\ & 15 \text { 250VAC } \\ & 2500 \mathrm{VAC} \end{aligned}$	15A 8VDC 15A 14VDC 6A 30VDC 0.4A 125VDC 0.2A 250VDC	
		Norminal Open		Norminal Close	
	Lamp Load	1.5A 125VAC 1.25A 250VAC 0.5A 500VAC	1.5A 8VDC 1.5A 14VDC 1.5A 30VDC 0.4A 125VDC 0.2A 250VDC	$\begin{aligned} & \text { 3A 125VAC } \\ & 2.5 \mathrm{~A} 250 \mathrm{VAC} \\ & 0.8 \mathrm{~A} 500 \mathrm{VAC} \end{aligned}$	3A 8VDC 3A 14VDC 3A 30VDC 0.4A 125VDC 0.2A 250VDC
Inductive	Motor Load		5A 125VAC 3A 250VAC 0.8A 500VAC	10A 8VDC 5A 14VDC 3A 30VDC 0.05A 125VDC 0.03A 250VDC	
	Inductive Load		15A 125VAC 15A 250VAC 2A 500VAC	15A 8VD 10A 14VDC 5A 30VDC 0.05A 125VDC 0.03A 250VDC	
Maximum Inrush Current		Norminal Open			I Close
		15A		30A	

The above figure means the normal current.
The Inductive load has the power factor of 0.4 or above (AC) and a correction factor of $7 \mathrm{~m} / \mathrm{s}$ or lower (DC).
-The lamp load generates approx. 10 times more inrush current, while the motor load generates 6 times more.

Dielectrle Strength		2,000VAC 1 minute
Life Cycle	Electrical	Min. 100,000
	Mechanical	Min. 1,000,000
Vibration Resistance	$10 \mathrm{~Hz} \sim 55 \mathrm{~Hz}$ Dual wave length 1.5 mm	
Shock	Malfunction	Max. 20G
	Destruction	Max. 200G
Degree Of Protection	Center Attachment type : IP65, Diagonal Attachment type : IP68	
Ambient Temperature	$-25^{\circ} \mathrm{C} \sim+80^{\circ} \mathrm{C}$ (with no icing)	
Ambient Humidity	$35 \% \sim 85 \% \mathrm{RH}$	

The above specification and the material can be changed without notice for the improvement of the quality.

Limit Switch

ELN Series

Product Selection

	Part Number	Head Type	Contact Form	Contact \& Contact Distance		Part Number	Head Type	Contact Form	Contact \& Contact Distance
	ELN-03	Push Plunger	$\begin{aligned} & 1 \mathrm{~N} / \mathrm{O} \\ & +1 \mathrm{~N} / \mathrm{C} \end{aligned}$	0.5 mm		ELN-031	Cross Roller Plunger	$\begin{aligned} & 1 \mathrm{~N} / \mathrm{O} \\ & +1 \mathrm{~N} / \mathrm{C} \end{aligned}$	0.5 mm
	ELN-030	Roller Plunger	1N/O $+1 \mathrm{~N} / \mathrm{C}$	0.5 mm		ELN-09	Roller Lever Plunger	$\begin{aligned} & 1 \mathrm{~N} / \mathrm{O} \\ & +1 \mathrm{~N} / \mathrm{C} \end{aligned}$	0.5 mm

Dimension

(mm)

Roller Lever Plunger

| II $\mathbf{- 1 2 0}$ | Industrial Controls Catalog | Www.kacon.co.kr |
| :--- | :--- | :--- | | Rev. 2/14 |
| :--- |
| Data subject may change without notice. |

Limit Switch

E1Z4 Series

Part Number Description

E1Z4 - \quad (1) K1

(1) Head Type
P1: Push Plunger
P2: Roller Plunger
L1: Roller Lever Plunger

Contact Part

Contact Form		1N/O+1N/C			
Contact Material		Ag alloy			
Contact \& Contact Distance		0.5 mm			
Insulation Resistance		100M ${ }^{\text {5 500VDC }}$			
Contact Resistance		Max. $50 \mathrm{~m} \Omega$			
	Resistance Load		$\begin{aligned} & \text { 15A 125VAC } \\ & 15 \mathrm{~A} 250 \mathrm{VAC} \\ & \text { 2A 500VAC } \end{aligned}$	15A 8VDC 15A 14VDC 6A 30VDC 0.4A 125VDC 0.2A 250VDC	
NonInductive			I Open		I Close
Contact Ratings	Lamp Load	$\begin{aligned} & \text { 1.5A 125VAC } \\ & 1.25 \mathrm{~A} 250 \mathrm{VAC} \\ & 0.5 \mathrm{~A} 500 \mathrm{VAC} \end{aligned}$	1.5A 8VDC 1.5A 14VDC 1.5A 30VDC 0.4A 125VDC 0.2A 250VDC	$\begin{aligned} & \text { 3A 125VAC } \\ & 2.5 \mathrm{~A} 250 \mathrm{VAC} \\ & 0.8 \mathrm{~A} 500 \mathrm{VAC} \end{aligned}$	3A 8VDC 3A 14VDC 3A 30VDC 0.4A 125VDC 0.2A 250VDC
	Motor Load		$\begin{aligned} & \text { 5A 125VAC } \\ & \text { 3A 250VAC } \\ & 0.8 \mathrm{~A} 500 \mathrm{VAC} \end{aligned}$	10A 8VDC 5A 14VDC 3A 25VDC 0.05A 125VDC 0.03A 250VDC	
Inductive	Inductive Load		$\begin{aligned} & \text { 15A 125VAC } \\ & \text { 15A 250VAC } \\ & \text { 2A 500VAC } \end{aligned}$	$\begin{aligned} & \text { 15A 8VD } \\ & \text { 10A 14VDC } \\ & \text { 5A 30VDC } \\ & \text { 0.05A 125VDC } \\ & \text { 0.03A 250VDC } \end{aligned}$	
Maximum Inrush Current		Norminal Open		Norminal Close	
		15A		30A	

-The above figure means the normal current.
-The Inductive load has the power factor of 0.4 or above (AC) and a correction factor of $7 \mathrm{~m} / \mathrm{s}$ or lower (DC).
The lamp load generates approx. 10 times more inrush current, while the motor load generates 6 times more.
General Specification

Dielectrle Strangth	$2,000 \mathrm{VAC} 1$ minute	
Life Cycle	Electrical	Min. 100,000
	Mechanical	Min. $1,000,000$
Vibration Resistance	$10 \mathrm{~Hz} \sim 55 \mathrm{~Hz}$ Dual wave length 1.5 mm	
Shock	Malfunction	Max. 20G
Resistance	Destructive	Max. 100 G
Degree Of Protection	IP67	
Ambient Temperature	$-25^{\circ} \mathrm{C} \sim+80^{\circ} \mathrm{C}$ (with no icing)	
Ambient Humidity	$35 \% \sim 85 \% \mathrm{RH}$	
Tightening Torque	$1.2 \mathrm{~N} \cdot \mathrm{~m}(12.24 \mathrm{kgf} \cdot \mathrm{cm})$	

The above specification and the material can be changed without notice for the improvement of the quality.

| Rev. 2/14
 Data subject may change without notice. www.kacon.co.kr | Industrial Controls Catalog |
| :--- | :--- | :--- |

Limit Switch

E1Z4 Series

Operation Characteristics

		model		
characteristics		E1Z4P1K1	E1Z4P2K1	680 g
OF	1000 g	350 g	170 g	
RF	220 g	114 g	4.5 mm	
PT	2.0 mm	0.5 mm	0.4 mm	
MD	0.1 mm	0.1 mm	5.5 mm	
OT	5.0 mm	3.6 mm	10 mm	

Product Selection

Dimension

Diagram

Wr. The above specification and the material can be changed without notice for the improvement of the quality.				
II $\mathbf{- 1 2 2}$	Industrial Controls Catalog	www.kacon.co.kr		Rev. 2/14
:---				
Data subject may change without notice.				

Waterlevel Switch \& Leak Detector

FLR Series

Part Number Description

\section*{| FLR | -1 | |
| :--- | :--- | :--- | :--- |}

(1) Description	$202:$ Socket / 3pole $201:$ Panel / 3pole	$203:$ Socket \& Panel/3pole $261: 5$ Pole Panel Mounting (option)
(2 Sensitivity	B: General Sensitivity	C : High Sensitivity
HS - (1)A		
(1) Poles	$3: 3$ Pole	

General Specification

Recede type							
Mounting		Socket		Socket+Panel		Socket	
Poles		FLR - 202B	FLR - 202C	FLR - 203B	FLR - 203C	FLR - 302C	
		3 pole	3 pole	3 pole	3 pole	2 pole	
Sensitivity	Operating	$5 \mathrm{k} \Omega$	25k	$5 \mathrm{k} \Omega$	25k Ω	0 Sensitivity : $5 \mathrm{k} \Omega$	50 Sensitivity : 70k Ω
	Return	15k Ω	35k	15k Ω	35k	0 Sensitivity: 50k Ω	50 Sensitivity : $200 \mathrm{k} \Omega$
Purpose		General sensitivity	High sensitivity	General sensitivity	High sensitivity	Leak detection	
Supply Voltage		220AVC					
Rated Current		5A 250VAC					
Dieletric Strength		2,000VAC 1 minute					
Insulation Resistance		100M 300 VDC					

Exposure type		
	FLR -201 B	FLR - 261B (option)
Poles	3 pole	5 pole
Sensitivity	Operating	$5 \mathrm{k} \Omega$
	Return	$15 \mathrm{k} \Omega$
Purpose	General Sensitivity	
Supply Voltage	$220 / 110 \mathrm{VAC}$	
Rated Current	5 A 250 VAC	
Dieletric Strength	$2,000 \mathrm{VAC} 1$ minute	
Insulation Resistance	$100 \mathrm{M} \Omega 500 \mathrm{VDC}$	
Tightening Torque	$0.8 \mathrm{~N} \cdot \mathrm{~m} \mathrm{(8.16kgf} \mathrm{\cdot cm)}$	

(x) The specification and material of the product can be changed without notice for higher quality.

Waterlevel Switch \& Leak Detector

FLR Series

Product Selection

FLR socket

Actuator Safety Switch

ZXS Series

Part Number Description

zxs -

(1) Contact arrangement
2 Actuator

The Contact Operating Chart

2B \quad 21-22

1 C

Contact Closed
Contact Open
IN : Actuator insertion position
OUT : Actuator release position

Specification

Contact Form	$2 \mathrm{~N} / \mathrm{C}, 1 \mathrm{~N} / \mathrm{O}+1 \mathrm{~N} / \mathrm{C}$
Contact Material	Ag Alloy / 24K Au Plate
Rated Current (Resistance Load)	3 A 240 VAC
Insulation Resistance	$100 \mathrm{M} \Omega 500 \mathrm{VDC}$
Contact Resistance	Max. 15ms
Life Cycle	Mechanical
	Electrical
Maximum Rated Voltage	Min. 300,000 Apply Rated Current
Dielectric Strength	600 V
Vibration Resistance	$1,500 \mathrm{VAC} 50 / 60 \mathrm{~Hz} 1$ minute
Degree of Protection	$10 \sim 55 \mathrm{~Hz}$ Durable Amplitude 1.5mm
Ambient Temperature	IP65 (Contact Part) / IP00(Operation Key Part)
Ambient Humidity	$-20 \sim 80{ }^{\circ} \mathrm{C}$ (With no icing)

| II - 126 | Industrial Controls Catalog | www.kacon.co.kr |
| :--- | :--- | :--- | | Rev. 2/14 |
| :--- |
| Data subject may change without notice. |

Caution

- Do not use the product in, nor in the environment influenced by, water or oil. Water or oil may penetrate inside (The protection standard IP67 tests the product in the water for a specific time and checks the water penetration)
- The switch body is protected against dusts and water, but the head is not. Do not allow the entrance of foreign matters because it may be a cause of early wear and damage.
- After wiring, be sure to mount the cover before use. Otherwise, it may cause an electric shock.

- Stopper installation

Do not use the body as a stopper. Be sure to mount a stopper and make it within the operating key setting area for the edge of the operation key to be separated from the head part.

Dimension

- Proper tightening torque

Loosened screws are the cause of early faults. Tighten the screws with a proper torque.

Type	Proper torque
Terminal screw / Earth terminal included	$0.59 \sim 0.78 \mathrm{~N} . \mathrm{m}$
Cover mounting screws*1	$1.18 \sim 1.37 \mathrm{~N} . \mathrm{m}$
Head mounting screw	$0.78 \sim 0.98 \mathrm{~N} . \mathrm{m}$
Body mounting screws*2	$4.90 \sim 5.88 \mathrm{~N} . \mathrm{m}$
Key mounting screws	$2.35 \sim 2.75 \mathrm{~N} . \mathrm{m}$
Connector	$1.77 \sim 2.16 \mathrm{~N} . \mathrm{m}$
Screw Cap	$1.27 \sim 1.67 \mathrm{~N} . \mathrm{m}$

-1. Three-lead-in type: $0.78 \sim 0.88 \mathrm{~N} \cdot \mathrm{~m}$

- 2 , Use the M5 screws.

Tighten bolts with a torque of $4.90 \sim 5.88 \mathrm{~N} \cdot \mathrm{~m}$, and countersunk head screws with a torque of $2.35 \sim 2.75 \mathrm{~N} \cdot \mathrm{~m}$.

- Mount Cut Dimensions

- Operation Key Mount

Horizontal Mount Type

Adjustable Type

Mount the switch body and operation key with screws or equivalent so that they are not easily removed, to ensure safety.

Rev. 2/14 Data subject may change without notice.	www.kacon.co.kr	Industrial Controls Catalog

Machines and engineers sharing senses.

[^0]: * NUMAR(7.7 ~ 9VDC) model is under development.
 ** Standard specification is not appeared in part number description

